5th State of the Onion

Larry Wall

Talk 1
An Overview of Perl

e Perl 5
e Perl 6

Talk 2
Bits and Pieces

» 33 lightning talks in half an hour

* See Apocalypse 2

» Expected apocalyptic error rate: 5%

Talk 3
Unary and Binary Operators

* Doing the Right Think
 Precedence level reform?

o User-defined operators (including Unicode)
e Sfoo->bar becomes $foo.bar

e Sfoo . Sbar becomes $foo ~ Sbar

 Scalar operators will work on array values

Talk 4
Statements and Declarations

o Switch statement--see Damian

given $foo {
when 1: { argle; }

when “a’”’: { bargle; }
}

* local renamed to temp

» Optional type and property declarations

Talk 5
Pattern Matching

* Assignment to variables
» Assignment to elements of arrays or hashes

» Set operations on character classes
/[[a-z] &&[*aeioul]]/
« /x modifier on by default?

e Matching on pseudo-strings

Talk 6
Subroutines

Complete type signatures
Discarding sub keyword on closures

Self-identifying parameters
sort { $%a cmp $”b } (@array

Pre-handlers and post-handlers--see Damian

Talk 7
Formats

 Kicked out of the core
e See Damian

Talk &
References

 Pseudo-hashes must die
* Deref always assumed by [1, {}, and ()

Perl 5 Perl 6
Sfoo->[Sbar] S$foo[Sbar]

Sfoo[Sbar] @foo[Sbar]

* Whitespace before hash subscript
Sfoo .{S$bar}

Talk 9
Data Structures

Opaque objects

Compact multidimensional arrays
Slicing specified within the subscript
Pairs, composed with =>

Ranges, composed with . .

Superpositions? See Damian

Talk 10
Packages

» Split up into classes and modules
» Within class or module, subpackages
* Generalized autoloading

Talk 11
Modules

Extended module names: version and author
Interface modules

Module searching

Better metadata for automation

Default import to lexical scope?
Wildcard modules?

Talk 12
Objects

Easy declaration, accessible metadata
Attributes declared as variables
Attributes accessed as methods externally
Foreign objects handled gracefully
Optional multimethods

* Class.bless (Sref) or

Sobj.bless (Sref)

Talk 13
Overloading

Can’t live with 1t, can’t shoot it.
cout << foo << bar << bletch;

Overloaded operator specified in method name
Overloading of methods as well as operators

Implementation via vtables
Overloading hooks in printf for bignums, etc.

Talk 14
Tied Variables

» Variable type, not value type!!!
» Naturally scoped to variable lifetime
* Needs to be declared for efficiency

Talk 15
Unicode

Compassion

Polymorphic strings

Abstract and concrete internal routines
Normalization normally at the filehandle
Type system must remember normalization
Do the Hard Thing even if 1t’s Right

Talk 16
Interprocess Communication

“No pain” installation of new protocols

Easy mapping of high-level structured data
from the network onto Perl’s data structures

Reliable low-level primitives, safe signals

[Pv6, coming to a circus near you

Talk 17
Threads

Basic model is I-threads

Variables may be shared by declaration
P-threads just means “share everything”
Modules should be thread safe by default
Module thread safety should be in metadata

With or without threads, we can do better at
event-based programming

Talk 18
Compiling

A parser of our own

Mutability

Portability of eval to VMs

Scoped mutations, syntactic delegation
One-pass lexical analysis

Immediate subroutines

Talk 19
The Command-Line Interface

e 1 RFC, proposing -r switch

* The life of a glue language--compete by
cooperating with the environment

Talk 20
The Perl Debugger

» Happy to delegate this to others

 Heavy dependency on the debugging
facilities of the platform (without code
rewriting)

 IDEs have their own i1deas

Talk 21
Internals and Externals

More delegation--see Dan’s talk on Thursday
Very modular

A software CPU

Regexen compile to normal opcodes
Garbage collection

Vtables

Internal abstract APIs

Talk 22
CPAN

Too big to download

ISPs don’t install enough of 1t
Bundles only a partial solution
Renewed interest in SDKs

Public rating system?

Talk 23
Security

Tainting via new property mechanism
Sandboxing via I-threads

Controlling easy-to-abuse syntax
Eternal vigilance on buffer overruns, etc.

Talk 24
Common Practices

* Eliminating (some) Common Goofs
foreach $i (1 .. 1_000 000 000) {..}

@big = 1 .. 1 000 000 000;
« RFC 183: “=for testing” - Embedded tests

Talk 25
Portable Perl

Full URI support
Full Unicode support, including dwimmery

Easy identification of non-portable code
Module metadata could indicate portability

Talk 26
Plain Old Documentation

Fixing =begin/=end for commenting
Multiple POD streams
DATA filehandle just another POD stream

Autodocs from module metadata (not
necessarily POD)

Big idea: equivalent of “use” for POD

Talk 27
Perl Culture

Mostly self-correcting at this point
Do your part

Newbie friendliness

Licensing cleanup

Testing, testing, testing

Talk 28
Special Names

« Balance cleanup with convenience
$_ stays
S (goes
* S () now means to interpolate an expression

« No more bareword filehandles
* Merge error status variables?

Talk 29
Functions

Dealing with long return lists

Array ops like merge, unmerge, part,
flatten, reduce...

Logical return values from index,
rindex, system wait, waitpid
Call a method a method

Getrid of select

Talk 30
The Standard Perl Library

Definitions of Standard become mushy

Cut core down to almost nothing, and force
installation of a more complete SDK

Multiple such SDKSs are possible, just as
with Linux distributions

SDK editors earn trust by recommending
reliable sets of modules

Talk 31
Pragmatic Modules

* More capacity to warp syntax and semantics
* But be careful with those semantics!!!
» Real optimization options

Talk 32
Standard Modules

* This may be a very small chapter in the next
edition of the Camel.

* Theoretically, we need just the CPAN module,
and 1ts dependencies

* Practically...

Talk 33
Diagnostic Messages

[18n and L10n

Exceptional exception handling

Typed exception objects

Unthrown exceptions: “false but interesting”

Shandle = open “nonesuch” or die;

5th State of the Onion

Larry Wall

