
Copyright © Damian Conway, 2001. All rights reserved.

Perl 6

Damian Conway

School of Computer Science and Software Engineering
Monash University

Australia

damian@conway.org

Summary

1. A Brief History of Perl (1.000 to 5.6.0) 1

2. A Brief History of Perl 6..................................... 9

The Birth.. 9

The Reasons (besides not being #*@%-ed)............. 10

Technical reasons for developing Perl 6 11

Political reasons for developing Perl 6.................... 12

Social and Community reasons for developing
Perl 6 .. 13

The Announcement ... 15

What Larry said.. 17

The Reaction.. 21

The Organization ... 24

3. A Brief Present of Perl 6 24

The People... 25

Mission Statement.. 26

The Plan... 26

Progress to date .. 31

4. A Not-very-brief Future of Perl 6................... 32

The Shape of Things To Come (Maybe) 32

The Proposals.. 33

Internals.. 34

Connecting with other languages............................ 35

Standardize support for filenames 36

Arbitrary precision numbers.................................... 36

Clean up the core ... 37

Slim the core.. 37

Better error messages... 38

Unicode.. 39

Compilation .. 40

Language proposals.. 40

Guiding principle... 41

Fix iterators ... 41

Time ... 41

Minimizing global variables..................................... 42

The local operator... 42

Overloading .. 44

Context detection ... 44

Switch statement .. 47

DWIMier comparisons .. 48

Making list returns more managable 49

Module termination... 50

Standardize package name separator 50

Constants... 51

Configuration.. 51

B&D.. 52

Loop extraction of multiple values.......................... 53

Remove vestigals.. 53

More DWIMity from common tests 54

String interpolation.. 55

Source filters ... 55

Better input control .. 56

Alternative front-ends ... 56

Vector processing... 57

Exceptions ... 59

Foreach loop counting... 59

Slicker I/O... 60

Net support ...61

Threads ..61

Object Oriented Perl...62

Guiding Principle ...62

Explicit class declaration syntax63

Alleviate the $_[0] annoyance63

Pseudo-hashes must die!...64

Simpler operator overloading64

Attribute access control ...64

Less holey blessing...65

Encapsulation..65

Proper object set-up and clean-up66

Delegation ...67

Interfaces..67

Better reflection...68

Regular Expressions..68

More flexible partial matching69

Identifying extracted data...69

Safer precompiled regexes ..70

Optimized match variables.......................................70

Assertions ..71

Subroutines ..71

Subroutine autoloading...72

Currying ..73

Coroutines ...74

Subroutine parameter lists..75

Lazy evaluation ..76

Subroutine overloading...77

Subroutine wrappers ...78

Odds and Ends...79

Expand the standard library.....................................80

Licensing..80

The Dark Side ..81

Inferential type system ..81

Global variables seriously deprecated82

Arrays and hashs assimilated...................................82

New comment markers ...83

No more prefixes..84

No special names ... 84

Slices default to end-of-container 85

Pseudo-scalar access to hash entries 85

Pass-by-value subroutines.. 85

OOO Perl ... 86

New features for pack and unpack....................... 86

Less punctuated regexes ... 87

Context-aware lvalue subroutines........................... 87

Malleable syntax... 88

Finality... 88

Bestiality .. 89

5. Making sense of the deluge 89

Through a Glass, Darkly ... 90

Prognostications... 90

Is Perl 6 going to be in C++?..................................... 91

Will Perl 6 have specs? .. 91

Will you rename the local operator? 91

Will there be changes to Perl's OO model? 92

What about garbage collection?............................... 92

How about multiline comments? 93

Will Perl 6 have strong typing?................................ 93

What about threads?.. 93

Can you hint at any other language changes
that you're considering?.. 94

What will happen to Perl 5? 95

What about Perl 7? ... 95

Predictions... 95

Guesses .. 97

The final word .. 98

6. Resources.. 99

1 Perl 6
Copyright © Damian Conway

February 2001

1. A Brief History of Perl (1.000 to
5.6.0)

• A brief recapitulation of the origins and
development of today's Perl

-15,000,000,000

• Universe begins

-4,500,000,000

• Earth coalesces

-3,600,000,000

• Life evolves

-400,000

• H. Sapiens evolves

Perl 6
Copyright © Damian Conway
February 2001 2

-50,000

• Spoken language evolves

-4,000

• Mesopotamians invent writing

-100

• Greeks build first recorded mechanical
computational device

1830

• Charles Babbage commences work on Analytical
Engine

• Ada, Lady Lovelace adapts punch cards for
program storage

1938

• Konrad Zuse develops the first fully digital
computer

3 Perl 6
Copyright © Damian Conway

February 2001

1954

• September: Larry Wall born

1957

• FORTRAN released

1958

• Texas Instruments builds the first silicon chip

• ALGOL released

1960

• LISP released

1960

• COBOL released

1972

• C released

Perl 6
Copyright © Damian Conway
February 2001 4

1986

• C++ released

1987

• 18 December: Perl 1.000 released

• $calars, @rrays, %ssociative_arrays

• subroutines

• lists

• <FILE> I/O

• while, for (C-like), if

• patterns and =~

• formats

• chop, die, each, split, join, select

1988

• 5 June: Perl 2.000 released

• Spencerian regexes

• local variables

5 Perl 6
Copyright © Damian Conway

February 2001

• recursive subroutine calls

• arrays interpolate into lists

• foreach

• file inclusion via do $file;

• warnings (-w)

• sort

1989

• 18 October: Perl 3.000 released

• GPL

• binary data handling (pack and unpack)

• pass-by-reference subroutine arguments

• subroutine prefix (&)

• undef introduced

• mkdir, rmdir, flock, readlink, warn, dbmopen,
dbmclose, dump, reverse, defined

1991

• 21 May: Perl 4.000 released

Perl 6
Copyright © Damian Conway
February 2001 6

• Artistic License

• array in scalar context gives length

• cmp and <=>

• caller, splice, qx//,

1994

• 18 October: Perl 5.000 released

• OO mechanism

• perldoc and pod

• lexical scoping

• :: package delimiter

• abs, chr, uc, ucfirst, lc, lcfirst, chomp, glob

• use statement

• => as synonym for comma

• tied variables

1995

• 13 March: Perl 5.001 released

7 Perl 6
Copyright © Damian Conway

February 2001

• closures

• $SIG{__WARN__} and $SIG{__DIE__}

1996

• 29 February: Perl 5.002 released

• prototypes

• operator overloading

• 10 October: Perl 5.003 released

• bug fixes only

1997

• 5 May: Perl 5.004 released

• $coderef->(@args) syntax

• native printf and sprintf

• use $VERSION

• UNIVERSAL::isa and UNIVERSAL::can

• m//gc

Perl 6
Copyright © Damian Conway
February 2001 8

1998

• 22 July: Perl 5.005 released

• complete tied arrays and handles

• pseudo-hashes

• threads

• compiler

• OO exception handling (die $ref)

• 19 August: Topaz project begins

2000

• March 28: Perl 5.6.0 released

• Unicode support

• lvalue subroutines,

• weak references

• lexically scoped warnings

• our declarations

• support for binary numbers.

9 Perl 6
Copyright © Damian Conway

February 2001

2. A Brief History of Perl 6

The Birth

• On Tuesday, July 18, 2000 , some of the perl5-
porters met during the 4th Perl Conference.

• Larry recalls what happened:

• "An interesting thing happened. We spent the first hour
gabbing about all sorts of political and organizational issues
of a fairly boring and mundane nature.

• Partway through, Jon Orwant comes in, and stands there for
a few minutes listening, and then he very calmly walks over
to the coffee service table in the corner, and there were about
20 of us in the room, and he picks up a coffee mug and
throws it against the other wall and he keeps throwing coffee
mugs against the other wall, and he says "we are #*@%-ed
unless we can come up with something that will excite the
community, because everyone's getting bored and going off
and doing other things".

• And he was right....so that sort of galvanized the meeting.
He said "I don't care what you do, but you gotta do
something big." And then he went away.

Perl 6
Copyright © Damian Conway
February 2001 10

• Don't misunderstand me. This was the most perfectly
planned tantrum you have ever seen. If any of you know
Jon, he likes control. This was a perfectly controlled
tantrum. It was amazing to see. I was thinking, "Should I
get up and throw mugs too?"

• Anyway, so we started talking after that and the idea popped
up that maybe we oughta rewrite Perl. The idea that
occurred to me then was that we had some new technology:
Perl has a decompiler now. You can take a Perl 5 script and
compile it down to the bytecode, and take that and compile it
back to Perl 5 code. And if you can do that, why not compile
it back to Perl 6 code?

• So later that day we also had an open meeting of the perl
porters, with about 50 people there, and we started handing
out tasks about how we would do the redesign. And the next
day in my keynote I announced that we were rewriting
Perl."

The Reasons (besides not being
#*@%-ed)

• Technical, political, and social reasons for
developing Perl 6...

11 Perl 6
Copyright © Damian Conway

February 2001

Technical reasons for developing Perl
6

• The current hacked nature of the Perl5 internals is
hindering Perl development and keeping
revolutionary new changes from Perl.

• Also provides a very high barrier to entry for
people who are interested in contributing to Perl,
fixing bugs, or writing XS.

• Perl6 as an opportunity to clean up the
implementation of Perl while still keeping a
language recognizable as Perl.

• Simplify Perl and reduce the complexity of the Perl
implementation.

• Attempt to reduce the disk size of the interpreter,
the amount of code necessary to implement it, and
its overall memory footprint.

Perl 6
Copyright © Damian Conway
February 2001 12

• Offers the possibility to re-examine Perl syntax.
Perl6 could allow programmers to write Perl
programs in multiple syntaxes, such as Python,
JavaScript and Perl5 instead of the Perl6 syntax.

• Richer, structured documentation syntax. POD can
be extended, cleaned up, or more widely adopted.

Political reasons for developing Perl
6

• Terse, incomprehensible or misunderstood feature
requests lead to much discussion but little
implementation.

• Majority of feature requests should be submitted in
an RFC or white paper format that is more
structured than email but not overly burdensome.

• Over time, produce a library of feature requests,
justifications and discussions that will clarify why
specific decisions were made.

13 Perl 6
Copyright © Damian Conway

February 2001

• Version skew management: upgrading a module
for one program may break other programs.
Mechanisms for installing multiple versions of a
shared library resource are well known and should
be incorporated into Perl module installation.

• Perl's support for reusing component software and
CORBA, COM, XPCOM should improve.

• The basic Perl package should include common
database, HTML, XML, and other common
features. The core Perl module library does not
reflect how most users expect to use Perl out of the
box.

• Many software developers like Java in part because
Java programs can ship without source code.
Adding capabilities to ship Perl programs in a
binary format is an area Perl6 can address.

Social and Community reasons for
developing Perl 6

• Perl5-porters model running out of steam (or
perhaps victims).

Perl 6
Copyright © Damian Conway
February 2001 14

• Need a series of smaller, more structured working
groups that focus on indiviudal aspects of Perl:

• chairperson ("pump-prince")

• goals

• charter

• timeframe

• deadline

• Give Perl6 community a different structure, culture

• Perl will remain an anything-goes, postmodern
culture, but we need to help focus everyone in a
more productive fashion

• Multiple mailing lists will be available to alert
people using Perl6 about new features,
experimental releases, stable release candidates
and expected release schedules.

• Developers of CPAN modules may need to update
their modules for Perl6. The development team
will communicate the issues involved in upgrading
modules so that CPAN is not left behind in the
great push to Perl6.

15 Perl 6
Copyright © Damian Conway

February 2001

• Backward compatibility has always been
important: Perl user could take Perl5 programs,
run it through a compiler backend to produce a
Perl6 version.

The Announcement

• Released by O'Reilly & Associates on July 19, 2000.

• LARRY WALL ANNOUNCES BROAD VISION FOR
PERL 6

• In his keynote address to the
O'Reilly Second Open Source
Convention, Larry Wall laid out his
vision for the future development of
Perl 6. Larry reports that "Perl 6
development has begun in earnest".

Perl 6
Copyright © Damian Conway
February 2001 16

• The next version of Perl is a chance
for the language developers to both
rewrite the internals and externals
of Perl based on their experience
from developing Perl 5, and Chip
Salzenberg1s work with Topaz. Larry
promises that Perl 6 will be "better,
stronger, faster" and that there will
be a clear, clean migration path from
Perl 5 to Perl 6. A preview release
of should be available by next
summer.

• Perl 6 will use a development model
that draws from the lessons learned
from perl5-porters and other large
open source projects such as the
Apache web server and the Linux
operating system. Development topics
will be assigned to working groups
which will work under a central
project manager. Nat Torkington is
the interim project manager. Details
will be made available in the Perl 6
section of www.perl.org.

17 Perl 6
Copyright © Damian Conway

February 2001

What Larry said

• During his "State of the Onion" talk, July 19, 2000.

• "One of the things we love about Perl is that it supports
many different styles of programming. That's
something we never want to lose with Perl....In fact,
there are many features we want to conserve in Perl, but
music is continually re-inventing itself and so is Perl
culture.

• "...occasionally there does come a time when we have to
think like revolutionaries. Yesterday, a bunch of us
radicals decided that it was time to alter the course of
human events."

• "...today, I'd like to announce to the world that the effort
to write Perl 6 has begun in earnest."

• "...you eventually come to a point where you say, "This
is a really neat gismo, but we can do something better.
Do we continue to make small improvements in the
current design or do we redesign the interface to let us
do what we would really do down the road?"

Perl 6
Copyright © Damian Conway
February 2001 18

• "And, if we do a redesign, can we keep everything
people like about the old design while getting rid of all
the things people don't like about the thing they have
right now?"

• "Well, that's kind of the state Perl is in right now. We
really, really like what we have. We like it a lot, but we
can think of lots of ways we can do it better and the
things we'd like to do better come in several categories."

• "First, the language itself could use some revision.
There are many historical warts on Perl that wouldn't
have been there if I'd known what I was doing...I'm
more of a competent language designer than I was 13
years ago and I have a lot more help these days, plus it's
time to steal all the good ideas we can from those other
languages that developed in the last decade."

• "...we're actually in a much better position than when I
designed Perl 5. Nowadays, we have code back-ins, such
as B::B Parse, that can spit out the Perl code
corresponding to the compiled syntax tree. If you think
about that, it means that it would be relatively easy to
make it spit out a closely related language, such as Perl
6."

19 Perl 6
Copyright © Damian Conway

February 2001

• "...for the first time in history we have the opportunity
to make some incompatible fixes to Perl while preserving
a migration path for the current code."

• "Of course, we are not interested in breaking things just
to break things, but I'm sure you can think of things
you might have done differently. Myself, I really wish
I'd made the system call return "true" on success rather
than "false." I wish I'd made local time return the
actual year and not the year minus 1900. I'd really love
to throw out select file handle and there's general
consensus that typeglobs may have outlived their
usefulness."

• "My overriding goal for the redesign of Perl's language
is that easy things should stay easy, hard things should
get easier, and impossible things should get hard, as it
were."

• "Another place we'd like to do better is in the
implementation of the language...the internal APIs
necessary to write extension modules could really use to
be cleaned up."

Perl 6
Copyright © Damian Conway
February 2001 20

• "So we've already started a redesign of Perl culture,
trying to keep the good aspects and leaving behind the
nonproductive aspects. We intend to abandon the Perl 5
porter's model of development, which demonstrably
leads to a lot of talk but little action."

• "Instead we'll break down the design of Perl 6 and the
maintenance of Perl 5 into manageable tasks given to
meaningful working groups with meaningful charters
and meaningful goals."

• "We are really jazzed about this. It is our belief that if
Perl culture is designed right, Perl will be able to evolve
into the language we need 20 years from now. It's also
our belief that only a radical rethinking of both the Perl
language and its implementation can energize the
community in the long run"

• "We expect to have alpha code a year from now, for
some definition of 'alpha'."

21 Perl 6
Copyright © Damian Conway

February 2001

• "In the meantime, we are not abandoning Perl 5
anytime soon. We all like Perl 5 a lot. We all use it a lot.
Many commercial interests will guarantee that Perl 5
continues to be well-maintained and stabilized for quite
a few years to come, and we fully expect, given the
history of Perl 4, that five years from now a lot of people
will still be using Perl 5."

• "We have to be better, not just get there faster. Part of
being better is making sure the stragglers don't get left
behind. We are determined to do the right thing by
everyone."

The Reaction

• Concern

• "Will Perl 5 source be 100% ok with Perl 6 or will I
have to rewrite code?"

• Apprehension

• "I'm always paranoid that when someone prunes a
language they'll take out something I always use. I hope
those guys are careful. "

Perl 6
Copyright © Damian Conway
February 2001 22

• Trepidation

• "Ow! Makes me feel like I'm a lobster and Larry Wall is
dipping me in butter"

• Irony

• "A complete rewrite? This, from the man who advocates
laziness in programmers?"

• Mock paranoia

• "O'Reilly is funneling massive kick backs to Larry Wall
in exchange for making millions of O'Reilly Perl books
obsolete. This way they get to "totally rewrite" the books
and sell them to you again all over again. Think of the
children! "

• Real paranoia

• "Doesn't Microsoft, the master of vaporware, somehow
influence the Perl development group with a hefty
financial arrangement?"

• Confidence

23 Perl 6
Copyright © Damian Conway

February 2001

• "Change is scary. But it sounds like this change will be
pretty transparent to programmers; perl will continue to
get faster and better, still stay easy to use, and Larry
Wall is still a little crazy. Well, it sounds like everything
is right in the world. "

• Cautious excitement

• "I might just be biased on this from the heavy amount of
web developement I do, but I'm anxiously awaiting the
new version. I just hope it won't require 100% rewrite
of my old scripts."

• Disbelief

• "Well, the Perl 6 thing was funny for a while, but I'm
kinda unconvinced now. OK, Perl 6 is starting to look
implausible. In fact, I'm convinced it's an elaborate
practical joke..."

• Mild hysteria

• "...Oh, and if this isn't a joke - I quit."

Perl 6
Copyright © Damian Conway
February 2001 24

The Organization

• Meanwhile the movers and shakers were shoving
and making

• Amailing list – perl6-bootstrap – was set up to
coordinating planning of the development process

• A plan was drawn up

• A process was initiated

• The juggernaut started rolling

3. A Brief Present of Perl 6

• The people

• The purpose

• The plan

• The progress

25 Perl 6
Copyright © Damian Conway

February 2001

The People

• The following roles were assigned

• Largely on the basis of willingness, past merit, and
demonstrated ability

• Language designer: Larry Wall

• Project manager: Nathan Torkington

• Internals development: Dan Sugalski

• Quality Control: Michael Schwern

• Information repository: Adam Turoff

• Librarian: Ask Bjørn Hansen

• Corporate Relations: Dick Hardt

• Public Relations: brian d foy

• Perl 5 Maintenance: Jarkko Hietaniemi

Perl 6
Copyright © Damian Conway
February 2001 26

Mission Statement

• Perl 6 will be a complete rewrite of Perl by the Perl
community.

• Perl 6 will incorporate improvements to the
language and to the internal API.

• The Perl 6 development process will be well
managed, clearly understood by all involved, and
open to any member of the Perl community who
wishes to contribute.

The Plan

• A twelve step plan to a cleaner, healthier Perl

Step 1: Restructure the community

• Social self-engineering

• Initial mailing lists with chairs, charters, etc.

• Initial rules for growth and control of mailing lists

27 Perl 6
Copyright © Damian Conway

February 2001

• Initial RFC structure

• Scheduled completion: On-going

Step 2: Brainstorming

• Identify issues, requirements, or wishes to use as
topics for RFCs

• Seek input from Perl 5 developers, Perl users
(sysadmins, web developers, application
developers, CPAN authors...), vendors or
distributors of Perl, other interested parties

• Draft RFCs

• Discuss and redraft RFCs

• Scheduled completion: 1 October 2000

Step 3: Design

• Larry evaluates the RFCs

• Puts them into his mental melting pot

Perl 6
Copyright © Damian Conway
February 2001 28

• Produces a design specification for Perl 6

• Scheduled completion: 27 October 2000

Step 4: Infrastructure

• Engineer the implementation process

• Earlier stages mostly talk; this stage mostly code

• Initial mailing lists/working groups with goals
and leaders

• Initial rules for growth and control of lists and
tasks

• Quality assurance processes

• Change management processes

• Documentation processes

• Scheduled completion: 27 October 2000

29 Perl 6
Copyright © Damian Conway

February 2001

Step 5: Analysis

• Flesh out design into hard requirements and
specifications

• Subgroup may need to prototype implementations
to facilitate this

• Scheduled completion: 31 December 2000

Step 6: Implementation

• Coding of the Perl 6 core

• Coding of the standard library

• Quality assurance and testing

• Change management

• Documentation

• Scheduled completion: Ongoing through 2001

Perl 6
Copyright © Damian Conway
February 2001 30

Step 7: Alpha release

• Selection of testers

• Distribution

• Feedback mechanisms

• Scheduled: June 2001

Step 8: Beta release

• Wide distribution

• High volume feedback mechanisms

• Platform testing

• Not yet scheduled

Step 9: Liaison

• With vendors regarding distribution of Perl 6

• Not yet scheduled

31 Perl 6
Copyright © Damian Conway

February 2001

Step 10: Final release

• Not yet scheduled

Step 11: Maintenance

• Of the Perl 6 core

• Of the standard library

• Of the documentation

• Ongoing quality assurance

• Scheduled completion: Ongoing

Step 12: Party On Dudes!

Progress to date

• Roles assigned (19 July 2000)

• Forums set up (25 July 2000)

• RFC submissions called for (29 July 2000)

Perl 6
Copyright © Damian Conway
February 2001 32

• Requirements analysis complete (1 August 2000)

• RFCs finalized and archived(1 October 2000)

• Design proceeding

• So we're currently at Step 3

4. A Not-very-brief Future of Perl 6

• What we could see

• What we probably will see

• What we might see

• What we won't see

The Shape of Things To Come
(Maybe)

• A whirlwind tour of the vast range of proposals
put forward in the RFC process

33 Perl 6
Copyright © Damian Conway

February 2001

• A brief whistle-stop at 133 of the 361 submissions
through which Larry is now trekking

The Proposals

• Submitted in a two month period

• At least two revisions each

• That's close to 14 full proposals (re-)submitted
every day for 9 weeks

• Many were hotly debated, and significantly
modified as a result

• 29 were ultimate retracted

• Collectively they covered:

• internals and implementation

• general language syntax and semantics

• data structures

• flow-of-control constructs

• errors and exceptions

Perl 6
Copyright © Damian Conway
February 2001 34

• IO

• OO

• regexes

• subroutines

• Unicode issues

• licensing

• quality assurance

• changes to the standard library

• It's 133 submissions to the next topic, you've got a
full stomach of coffee, half a pack of No-Doze, it's
dark, and I'm not wearing sunglasses.

• Hold on to you hats...here we go...

Internals

• Mainly focussed on:

• making the internals more maintainable

• making it easier to connect other languages to Perl

• reducing the core

35 Perl 6
Copyright © Damian Conway

February 2001

• Unicode

Connecting with other languages

• RFC 32: A method of allowing foreign objects in
perl

• RFC 334: Perl should allow specially attributed
subs to be called as C functions

• RFC 121: linkable output mode

• RFC 270: Replace XS with the Inline module as
the standard way to extend Perl.

• Seamless access between Perl and C for objects and
subroutines

• Automated creation of appropriate glue (data
format transformations, type mapping, etc.)

• The Inline proposal is based on the excellent CPAN
module

Perl 6
Copyright © Damian Conway
February 2001 36

Standardize support for filenames

• RFC 36: Structured Internal Representation of
Filenames

• DWIM handling of cross-platform filenames

• Automatic directory separator translation

Arbitrary precision numbers

• RFC 43: Integrate BigInts (and BigRats) Support
Tightly With The Basic Scalars

• Transparent promotion of built-in numbers

• int → floating point (as now)

• floating point → BigInt or BigRat (as appropriate)

• Invisible to programmer (just DWIMs)

37 Perl 6
Copyright © Damian Conway

February 2001

Clean up the core

• RFC 125: Components in the Perl Core Should
Have Well-Defined APIs and Behavior

• RFC 323: Perl's embedding API should be simple

• Specify clean and simple APIs for all internal data
types

• OO model (but probably not OO implementation)

• Document properly

Slim the core

• RFC 146: Remove socket functions from core

• RFC 155: Remove mathematic and trigonomic
functions from core binary

• RFC 230: Replace format built-in with format
function

• Put them in modules

Perl 6
Copyright © Damian Conway
February 2001 38

• May or not be autoloaded on demand

• The last of these RFCs is based on the Text::Reform
CPAN module (formerly part of Text::Autoformat)

• Substantial changes to the way formats work:

• subroutine based (i.e. run-time)

• lexically scoped

• more powerful

• more configurable

• re-entrant

Better error messages

• RFC 214: Emit warnings and errors based on
unoptimized code

• Compiler sometimes optimizes away the actual
source of a problem

• Or replaces it with something faster

• So error message refers to code that doesn't seem
to exist in the source

39 Perl 6
Copyright © Damian Conway

February 2001

• Make error messages relate to the source, not the
executable

Unicode

• RFC 294: Internally, data is stored as UTF8

• RFC 295: Normalisation and unicode::exact

• RFC 312: Unicode Combinatorix

• Define the One True Internal Format that all string
data is converted to

• Data is automatically normalized (i.e. "combining
characters" are combined to equivalent single
codes)

• Implies eq compares the meaning of a string
encoding, not the raw bytes

• But manually overridable via pragma

Perl 6
Copyright © Damian Conway
February 2001 40

Compilation

• RFC 301: Cache byte-compiled programs and
modules

• RFC 310: Ordered bytecode

• RFC 270: Replace XS with the Inline module as
the standard way to extend Perl.

• Cache the internal byte-codes (or object code) of a
program or module around for next time

• Possibly in a format that allows JIT or parallel
loading

Language proposals

• Tend to be more tightly focussed on a single
construct

• A vast assortment of suggestions

• From fixing very small annoyances

41 Perl 6
Copyright © Damian Conway

February 2001

• To major new syntax and styles of programming

Guiding principle

• RFC 28: Perl should stay Perl.

• This is a golden opportunity to change everything

• Let's not take it

Fix iterators

• RFC 136: Implementation of hash iterators

• Fix each so it DWIMs with this:

• while ($key1 = each %hash) {
while ($key2 = each %hash) {

print $hash{$key1}^$hash{$key2}
}

}

Time

• RFC 7: Higher resolution time values

Perl 6
Copyright © Damian Conway
February 2001 42

• Why throw away information?

• Have a floating point return value from time()

• Former behaviour still available via int(time())

Minimizing global variables

• RFC 17: Organization and Rationalization of Perl
State Variables

• Spring clean them

• Throw out the ones no-one uses any more
(e.g. $[, $*, $#)

• Put the rest inside subroutines

• Or in nice safe lexical scopes

The local operator

• RFC 19: Rename the local operator

• Works better in Latin (where it's "loco")

43 Perl 6
Copyright © Damian Conway

February 2001

• It really means "install another variable in loco
parentis of the named global, until control leaves this
scope"

• So there's very little "local" about it.

• But what to call it?

• Suggestions:

• now

• save, dynsave, saveval, saverestore

• temp, savetemp, tempsave, scopetemp,
tempval

• current

• scratchpad

• deliver

• preserve

• pushval

• contain

• detach

• revalue

Perl 6
Copyright © Damian Conway
February 2001 44

• let

• Larry suggested temporarily, as in:

• temporarily $x = 7;

• Anyone know a good five-letter synonym???

Overloading

• RFC 20: Overloadable && and ||

• Currently (almost) the only operators whose
behaviour cannot be redefined

• But without them it's hard to implement new
"algebraic" classes

Context detection

• RFC 21: Subroutines: Replace wantarray with a
generic want function

• Extended awareness of context

• Many more contexts to be aware of:

45 Perl 6
Copyright © Damian Conway

February 2001

• 'HASH'

• %hash = func();

• 'STRING'

• $val = $hash{func()};

• print func();

• 'NUMBER'

• $val = func() * 2;

• $val = sin(func());

• $val = $array[func()];

• 'INTEGER'

• $val = $array[func()];

• $val = "str" x func();

• 'BOOLEAN'

• if (func()) {...}

• $val = func() || 0;

• 'SCALARREF'

• $val = ${func()};

• 'ARRAYREF'

Perl 6
Copyright © Damian Conway
February 2001 46

• func()->[$index];

• push @{func()}, $val;

• 'HASHREF'

• func()->{key};

• @keys = keys %{func()};

• 'OBJREF'

• func()->method();

• 'CODEREF'

• func()->();

• &{func()}();

• 'IOREF'

• print {func()} @data;

• 'LVALUE'

• func() = 0;

• 'RVALUE'

• $val = func();

• @vals = func();

47 Perl 6
Copyright © Damian Conway

February 2001

• Also, could retrieve how many list return values
are expected, so only need to generate that many:

• ($line1, $line2, $line3) =
get_data();

Switch statement

• RFC 22: Control flow: Builtin switch statement

• Swiss Army Switch

• Based on CPAN Switch.pm module

• switch ($val) {

• case 1 { print "number 1" }

• case "a" { print "string a" }

• case [1..10,42] { print "number in
list" and next }

• case (@array) { print "number in
list" }

• case /\w+/ { print "pattern" }

• case qr/\w+/ { print "pattern" }

Perl 6
Copyright © Damian Conway
February 2001 48

• case (%hash) { print "entry in hash"
}

• do_something_here();

• case (\%hash) { print "entry in hash"
}

• case (\&sub) { print "arg to
subroutine" }

• else { print "previous case
not true" }

• }

DWIMier comparisons

• RFC 25: Operators: Multiway comparisons

• if (1 < $x < 10) {...}

• Currently an error.

• Make it work just like the writer intended

49 Perl 6
Copyright © Damian Conway

February 2001

Making list returns more managable

• RFC 37: Positional Return Lists Considered
Harmful

• RFC 259: Builtins : Make use of hashref context for
garrulous builtins

• @context = caller(1);

• Anyone know which element of @context tells
you if you're inside an eval?

• if ((caller(1))[6]) { print "in
eval" }

• Let caller and other such routines (e.g. stat,
localtime) detect a 'HASHREF' context and
return data that way instead:

• if (caller(1)->{ eval}) { print "in
eval" }

Perl 6
Copyright © Damian Conway
February 2001 50

Module termination

• RFC 55: Compilation: Remove requirement for final
true value in require-d and do-ed files

• Almost no-one ever puts anything except 1 at the
end of a module.

• So remove the need to

• Handle failure by exceptions instead

• Might produce the single biggest reduction in
unneeded grief of any proposal.

Standardize package name separator

• RFC 71: Legacy Perl $pkg'var should die

• Only allow $pkg::var in Perl 6

• Doesn't look good for the D'uh module

• Or for programming in Klingon

51 Perl 6
Copyright © Damian Conway

February 2001

• Hu'tegh baQa' ghay'cha!

Constants

• RFC 83: Make constants look like variables

• my $pi : constant = 3;

Configuration

• RFC 114: Perl resource configuration

• A ~/.perlrc file

• Source code (most likely use's) that is always
executed before any script.

• For example:

• use strict; # always
paranoid
use warnings 'all'; # always really
paranoid
use Coy; # but sensitive

Perl 6
Copyright © Damian Conway
February 2001 52

B&D

• RFC 140: One Should Not Get Away With Ignoring
System Call Errors

• RFC 278: Additions to 'use strict' to fix syntactic
ambiguities

• More discipline!

• use strict 'system'

• Kills you if you throw away return values of
system calls

• use strict 'words'

• Kills you if you use any bareword (including class
names and unparenthesized subroutines)

• use strict 'objects'

• Kills you unless you em-brace indirect objects

• use strict 'syntax'

• Kills you if you even breathe wrongly whilst
you're coding

53 Perl 6
Copyright © Damian Conway

February 2001

Loop extraction of multiple values

• RFC 173: Allow multiple loop variables in foreach
statements

• foreach my ($x, $y, $z) (@list) {
...

}

• Iterate variables two or more at a time

• If list was built lazily, would also solve hash
iterator problem:

• foreach my ($key1, $val1) (%hash) {
foreach my ($key2, $val2) (%hash) {

print $hash{$key1}^$hash{$key2}
}

}

Remove vestigals

• RFC 195: Retire chop()

Perl 6
Copyright © Damian Conway
February 2001 54

• ...because chomp is what you almost certainly
want.

• And there always: substr($str,-1,1,"");

More DWIMity from common tests

• RFC 213: rindex and index should return true/false
values

• RFC 221: system() should return useful values

• index and rindex currently return 0 if match is
at first position

• Breaks a boundary case of a useful idiom:

• if (index($str,$substr)) {...}

• Return "0 but true" instead to fix that

• system returns the command return value

• Typically a Unixish 0-on-success

• Should return true so we can write:

55 Perl 6
Copyright © Damian Conway

February 2001

• system($cmd) || die;

• instead of the just-plain-weird:

• system($cmd) && die;

String interpolation

• RFC 252: Interpolation of subroutines

• RFC 237: hashes should interpolate in double-
quoted strings

• RFC 222: Interpolation of object method calls

• print "Today is &date()\n";

• print "The data is %data\n";

• print "My name is $self->name()\n";

Source filters

• RFC 264: Provide a standard module to simplify
the creation of source filters

Perl 6
Copyright © Damian Conway
February 2001 56

• Source pre-filters not yet widely used

• Current interface (Filter::Exec::Call CPAN module)
very powerful and configurable

• But too complex for average module creator

• CPAN module Filter::Simple proposed as the
solution

Better input control

• RFC 285: Lazy Input / Context-sensitive Input

• Use extended context information to determine
how much data to suck in:

• ($x, $y, $z) = <SRC>

• Would note finite list context and only read three
lines

Alternative front-ends

• RFC 329: use syntax

57 Perl 6
Copyright © Damian Conway

February 2001

• Compile-time selection of parser:

• use syntax 'Perl5';

• use syntax 'Latin';

• use syntax 'Python';

Vector processing

• RFC 82: Arrays: Apply operators element-wise in a
list context

• RFC 90: Arrays: merge() and unmerge()

• RFC 91: Arrays: part and flatten

• RFC 116: Efficient numerics with perl

• RFC 117: Perl syntax support for ranges

• RFC 148: Arrays: Add reshape() for multi-
dimensional array reshaping

Perl 6
Copyright © Damian Conway
February 2001 58

• RFC 202: Arrays: Overview of multidimensional
array RFCs

• RFC 203: Arrays: Notation for declaring and
creating arrays

• RFC 204: Arrays: Use list reference for
multidimensional array access

• RFC 205: Arrays: New operator ';' for creating
array slices

• RFC 206: Arrays: @#arr for getting the dimensions
of an array

• RFC 207: Arrays: Efficient Array Loops

• RFC 272: Arrays: transpose()

• Heavy multi-part proposal on data structures

• For heavy mathematical usages (i.e. PDL)

• Heavy-duty multidimensional arrays

59 Perl 6
Copyright © Damian Conway

February 2001

• Heavy

Exceptions

• RFC 80: Exception objects and classes for builtins

• RFC 88: Omnibus Structured Exception/Error
Handling Mechanism

• RFC 119: Object neutral error handling via
exceptions

• Various approaches to providing a real OO
exception mechanism

• Most suggest separate try and catch keywords
to replace eval {...}

Foreach loop counting

• RFC 120: Implicit counter in for statements,
possibly $#

• C-like for's are ugly and unPerlish

• But occasionally necessary:

Perl 6
Copyright © Damian Conway
February 2001 60

• for ($i = 0; $i <= $#array; $i++) {
$array[$i]->getline;
$array[$i]->parseline;
$array[$i]->printline;
$array[$i]->index = $i;

}

• Provide an automagic lexically scoped punctuation
variable that tracks the iteration number (from
zero):

• foreach my $object (@array) {
$object->getline;
$object->parseline;
$object->printline;
$object->index = $#;

}

Slicker I/O

• RFC 311: Line Disciplines

• Real control over input and output processes

• Dictate how line endings are parsed

61 Perl 6
Copyright © Damian Conway

February 2001

• Alter the buffering behaviour of the stream

• Interpose coding translations (to/from Unicode or
EBCDIC)

• Interpose compression/decompression

Net support

• RFC 100: Embed full URI support into Perl

• my $handle = open
'http://dev.perl.org/rfc/100.html'
or die;

Threads

• RFC 178: Lightweight Threads

• RFC 185: Thread Programming Model

• Fix the threading model

• Favour micro-fork ("ithreads") model over shared-
state model ("pthreads")

Perl 6
Copyright © Damian Conway
February 2001 62

• Shared variables must be explicitly declared

Object Oriented Perl

• More declarative class specifications

• Cleaner and richer method dispatch semantics

• Built-in (optional) encapsulation

• Integrate OO and tie mechanisms

• Make good things easier and mistakes harder

Guiding Principle

• RFC 137: Overview: Perl OO should not be
fundamentally changed.

• My view

• "It ain't broke."

• No need to "fix", only strengthen

63 Perl 6
Copyright © Damian Conway

February 2001

Explicit class declaration syntax

• RFC 95: Object Classes

• A class keyword separate from package

• Declarative classes (à la Java, C++, Eiffel, Ada, etc.)

Alleviate the $_[0] annoyance

• RFC 152: Replace invocant in @_ with self() builtin

• RFC 223: Objects: use invocant pragma

• Two different takes on allowing the object
reference to be autoextracted

• Both allow this:

• package MyClass;

sub mymethod {
if (self->{attr}) { ... }

}

Perl 6
Copyright © Damian Conway
February 2001 64

Pseudo-hashes must die!

• RFC 241: Pseudo-hashes must die!

• Pseudo-hashes must die!

• A failed experiment

• Foster the illusion of security

• Prone to nasty, subtle bugs

Simpler operator overloading

• RFC 159: True Polymorphic Objects

• Replace use overload

• Named methods: STRING, PLUS, CONCAT, etc.

Attribute access control

• RFC 163: Objects: Autoaccessors for object data
structures

65 Perl 6
Copyright © Damian Conway

February 2001

• Ability to declare read-only and write-only object
attributes

Less holey blessing

• RFC 187: Objects : Mandatory and enhanced
second argument to bless

• bless must be called with class name as second
argument

• No more base-class time-bombs

• Also, second argument would be smarter about
determining class name

• Implicitly tries: ref $_[1] || $_[1]

Encapsulation

• RFC 188: Objects : Private keys and methods

• RFC 336: use strict 'objects': a new pragma for
using Java-like objects in Perl

Perl 6
Copyright © Damian Conway
February 2001 66

• Private, protected, and public attributes for hash-
based objects.

• Based on the Tie::SecureHash CPAN module

Proper object set-up and clean-up

• RFC 189: Objects : Hierarchical calls to initializers
and destructors

• Initializers and clean-up routines with standard
names

• BUILD and DESTROY

• Class's BUILD called automagically when an object
bless'ed

• All ancestral class's BUILD methods also called!

• Likewise calls to DESTROY become automatically
hierarchical

67 Perl 6
Copyright © Damian Conway

February 2001

Delegation

• RFC 193: Objects : Core support for method
delegation

• "Has-a" semantics sometimes more appropriate
than "is-a" semantics

• Would cause a method call on an object to be
automatically forwarded to a particular attribute of
that object

• Based on Class::Delegation CPAN module

Interfaces

• RFC 265: Interface polymorphism considered
lovely

• Java-like interfaces to go with Perl 6's optional
static typing

Perl 6
Copyright © Damian Conway
February 2001 68

Better reflection

• RFC 335: Class Methods Introspection: what
methods does this object support?

• Rather than writing:

• @methods = grep {defined
&{"MyClass::$_"}} keys %MyClass::;

• you could write:

• @methods = $obj->methods();

Regular Expressions

• Other data sources

• Easier access to matched data

• More control during a match

69 Perl 6
Copyright © Damian Conway

February 2001

More flexible partial matching

• RFC 93: Regex: Support for incremental pattern
matching

• RFC 316: Regex modifier for support of chunk
processing and prefix matching

• Allow patterns to match incomplete data

• Such as that taken from an input stream

• Under first proposal, pattern can request more
input from a sub during matching

• Under second proposal, pattern can signal
"premature end-of-data" and then allow user to
add provide more data manually

• Possibly: *STDIN =~ /$pattern/

Identifying extracted data

• RFC 110: counting matches

Perl 6
Copyright © Damian Conway
February 2001 70

• RFC 150: Extend regex syntax to provide for return
of a hash of matched subpatterns

• Named capturing brackets, so you don't have to
count them anymore.

• Matched substrings returned as variables (first
proposal) or a hash (second proposal)

Safer precompiled regexes

• RFC 276: Localising Paren Counts in qr()s

• Within a qr/.../, the back-reference \1 would
mean "the substring matched by the first capturing
parenthesis in the qr//"

• Can then safely interpolate into larger patterns
with their own capturing parentheses

Optimized match variables

• RFC 158: Regular Expression Special Variables

• Make $`, $&, and $' lexically scoped

71 Perl 6
Copyright © Damian Conway

February 2001

• Also add an explicit modifier to request they be set

• Now their overheads are only incurred by the
regexes in which they're actually used

Assertions

• RFC 348: Regex assertions in plain Perl code

• Retarget the mysterious (?{...}) construct as a
zero-width boolean assertion

• Like (?=...) and (?>...)

• For example, instead of:

• /^25\d|2[1-4]\d|1?\d{1,2}$/

• you could write:

• /(^\d+$)(?{$1<256})/

Subroutines

• Fewer built-ins

Perl 6
Copyright © Damian Conway
February 2001 72

• New declaration syntaxes

• Lazy evaluation

• Wrappers

Subroutine autoloading

• RFC 8: The AUTOLOAD subroutine should be able
to decline a request

• RFC 232: Replace AUTOLOAD by a more flexible
mechanism

• RFC 190: Objects : NEXT pseudoclass for method
redispatch

• Currently the AUTOLOAD belonging to the current
package or most-derived class is invoked and must
contend with every possibility

• Give an AUTOLOAD the chance to reject the
invocation and let some other AUTOLOAD
elsewhere in the inheritance tree handle the call.

• "Sorry, we don't deal with that here: try down the road"

73 Perl 6
Copyright © Damian Conway

February 2001

Currying

• RFC 23: Higher order functions

• Proposes a freaky declarative subroutine syntax

• Instead of:

• $tree->apply(sub{ $max += $_[0] });

• can write:

• $tree->apply($max += ^_);

• Delivers enormous power and the ability to do
effective functional programming in Perl

• Resultant subroutines "curry" like so:

• $add = ^_ + ^_;
foreach (@values) { $_ = $add->($_,1)
}

$incr = $add->(1);
foreach (@values) { $_ = $incr->($_)
}

Perl 6
Copyright © Damian Conway
February 2001 74

Coroutines

• RFC 31: Subroutines: Co-routines

• Subroutines that remember where you exited them

• Then resume from that point, next time you invoke
them

• Original call's argument list and lexicals are
preserved

• Ideal for user-defined iterators

• For example:

75 Perl 6
Copyright © Damian Conway

February 2001

• package Tree;

sub next_inorder ($self) {
yield $self->{left}->next_inorder

if $self->{left};
yield $self;
yield $self->{right}->next_inorder

if $self->{right};
return;

}

while (my $node = $root-
>next_inorder()) {
print $node->{data};

}

• Or for mapping hashes:

• %newhash = map {
yield process_key($_);
return process_val($_);

} %oldhash;

Subroutine parameter lists

• RFC 57: Subroutine prototypes and parameters

Perl 6
Copyright © Damian Conway
February 2001 76

• RFC 128: Subroutines: Extend subroutine contexts
to include named parameters and lazy arguments

• RFC 160: Function-call named parameters (with
compiler optimizations)

• Much more powerful parameter specification
mechanism, including:

• Ability to prototype any built-in function

• Named parameters

• Variadic parameters

• Ability to specify alternate argument types in a given
position of the argument list (a la map and grep)

• Ability to specify lazy evaluation

• sub my_grep_node([&//$]filter, \@list: lazy) {
bless {

filter => $filter,
list => $list,

}, 'GrepNode';
}

Lazy evaluation

• RFC 123: Builtin: lazy

77 Perl 6
Copyright © Damian Conway

February 2001

• Lazy evaluation of lists

• Lazy evaluation of argument lists

• Probably not automatic

• Explicitly requested:

• sub process (@data : lazy) {...}

process(1..1000000000);

• sub process (@data) {...}

process(lazy(1..1000000000));

Subroutine overloading

• RFC 97 : Prototype-based method overloading

• RFC 256: Objects : Native support for
multimethods

• Multiple subroutines with the same name, but
different parameter lists (à la C++)

Perl 6
Copyright © Damian Conway
February 2001 78

• Second proposal also offers multiple dispatch
based on Class::Multimethods CPAN module

Subroutine wrappers

• RFC 194: Standardise Function Pre- and Post-
Handling

• RFC 271: Subroutines : Pre- and post- handlers for
subroutines

• Wrappers for subroutines and built-in functions

• Allows extension of existing functionality:

• pre set_temp {
$_[0]-=32;
$_[0]/=1.8;

}
post get_temp {
$_[-1]*=1.8;
$_[-1]+=32;

}

79 Perl 6
Copyright © Damian Conway

February 2001

• pre CORE::open {
$_[1] = "lynx -source $_[1] |"

if $_[1] =~ m{^http://};
}

• Allows memoization:

• my %sin_cache;

pre CORE::sin {
$_[-1] = $sin_cache{$_[0]}

if exists $sin_cache{$_[0]}
}

post CORE::sin {
$sin_cache{$_[0]} = $_[-1];

}

• Second proposal also provides Design-by-Contract
programming support at no extra charge

Odds and Ends

• Meta-linguistic

Perl 6
Copyright © Damian Conway
February 2001 80

• Legal

Expand the standard library

• RFC 260: More modules

• ...in the standard distribution

• Survey Perl community to see what's missing

Licensing

• RFC 211: The Artistic License Must Be Changed

• RFC 346: Perl6's License Should be (GPL|Artistic-
2.0)

• A new Artistic License for Perl

• Unambiguous

• Unrestrictive

• Widely acceptable

81 Perl 6
Copyright © Damian Conway

February 2001

• Commercially viable

• Legally watertight

• Still simple

The Dark Side

• Proposals that are very unlikely to be accepted

• Often because Larry has already expressed his
disinclination

• Or because they're too unPerlish

• Or because they create more problems than they
solve

Inferential type system

• RFC 4: type inference

• An ML-like, inferred, dynamic type system

Perl 6
Copyright © Damian Conway
February 2001 82

Global variables seriously deprecated

• RFC 6: Lexical variables made default

• RFC 64: New pragma 'scope' to change Perl's
default scoping

• use strict 'vars' active by default

• Using an undeclared variable creates a new lexical
variable within the scope

• Widely opposed, especially by:

• RFC 16: Keep default Perl free of constraints such as
warnings and strict

• RFC 330: Global dynamic variables should remain the
default

• RFC 106: lexical variables made default without
requiring strict 'vars'

Arrays and hashs assimilated

• RFC 9: Highlander Variable Types

83 Perl 6
Copyright © Damian Conway

February 2001

• RFC 341: Unified container theory

• "Thar ken be onla wun (type)!"

• Merge scalars, arrays, and hashes

• Only scalars left

• $array[$index] becomes an abbreviation for
$array->[$index]

• Strongly opposed, since $array = 7 would then
wipe out the entire array

New comment markers

• RFC 102: Inline Comments for Perl

• RFC 5: Multiline Comments for Perl.

• #< Would let you write a Perl comment
that spans multiple lines >#

• #<or># push #<comments between>#
@arg1, #<and># @arg2;

Perl 6
Copyright © Damian Conway
February 2001 84

No more prefixes

• RFC 133: Alternate Syntax for variable names

• Get rid of $, @, and % prefixes

• Use bare identifiers to access variables

• Determine type of variable by context

No special names

• RFC 243: No special UPPERCASE_NAME
subroutines

• No BEGIN, FETCH, AUTOLOAD, etc.

• use tie
FETCH => sub {...},
STORE => sub {...},
etc.

;

85 Perl 6
Copyright © Damian Conway

February 2001

Slices default to end-of-container

• RFC 282: Open-ended slices

• @list[2..] instead of @list[2..$#list]

• @list[..2] instead of @list[0..2]

• @list[..] instead of @list[0..$#list]

Pseudo-scalar access to hash entries

• RFC 342: Pascal-like "with"

• with (%hash) {
$key1 = <>; # $hash->{key1} = <>;
$key2 = func(); # $hash->{key2} = func();

}

Pass-by-value subroutines

• RFC 344: Elements of @_ should be read-only by
default

• Pass-by-reference would have to be explicitly
requested

Perl 6
Copyright © Damian Conway
February 2001 86

OOO Perl

• RFC 352: Merge Perl and C#, but have default
Main class for scripting.

• RFC 73: All Perl core functions should return
objects

• RFC 161: Everything in Perl becomes an object.

• Object Oriented Only Perl.

New features for pack and unpack

• RFC 142: Enhanced Pack/Unpack

• RFC 246: pack/unpack uncontrovercial
enhancements

• RFC 247: pack/unpack C-like enhancements

• RFC 248: enhanced groups in pack/unpack

• RFC 249: Use pack/unpack for marshalling

87 Perl 6
Copyright © Damian Conway

February 2001

• RFC 250: hooks in pack/unpack

• Evidently they're not scary enough yet.

Less punctuated regexes

• RFC 164: Replace =~, !~, m//, s///, and tr// with
match(), subst(), and trade()

• Functional style of matching

• Proposed syntax definitely cleaner (less line-noise)

• But almost certainly too radical a change

• "...soulless..."

Context-aware lvalue subroutines

• RFC 132: Subroutines should be able to return an
lvalue

• RFC 149: Lvalue subroutines: implicit and explicit
assignment

Perl 6
Copyright © Damian Conway
February 2001 88

• RFC 154: Simple assignment lvalue subs should
be on by default

• Let's break what little encapsulation Perl has by
passing lvalue subroutines the lvalue they're being
assigned to

Malleable syntax

• RFC 309: Allow keywords in sub prototypes

• sub locate ($, "in", @) {...}

and then

my $xloc = locate $x in @list;

• Probably tough on the parser

Finality

• RFC 141: This Is The Last Major Revision

• Proposes Perl slowly converge on version 2π
(6.283185307179586....)

89 Perl 6
Copyright © Damian Conway

February 2001

Bestiality

• RFC 343: New Perl Mascot

• Abandon the Camel

• Because something like the Lithuanian tree vole
isn't already copyrighted by Evil Multinational
Publishers Who Secretly Control Perl For Their
Own Financial Gain And Only License The
Mascot's Image To Their Own Lackeys!!!!!

5. Making sense of the deluge

• If your head is now spinning, bear in mind that
weve only just skimmed slightly more than 1/3 of
the RFCs

• Larry has to assail, assay, assess, assimilate, and
associate twice as many again

• In excruciating detail

• Trying to see implications and interrelationships as
well

Perl 6
Copyright © Damian Conway
February 2001 90

• That's why the design phase is already stretching
far longer than the schedule allowed for

• There's not much to be done about that: the task is
herculean and we've already got our best man on it

• We now wait for him to point the way

Through a Glass, Darkly

• But that needn't stop us from speculating

• Prognostications

• Predictions

• Outright guesses

Prognostications

• These common questions-and-answers about the
shape of Perl 6 are taken from Larry's various
speeches and interviews.

• The Perl 6 features they suggest should be
considered "probable" (because of Rule #1)...

91 Perl 6
Copyright © Damian Conway

February 2001

• ...but no more than "probable"
(because of Rule #2)

Is Perl 6 going to be in C++?

• "Maybe. Chip has a lot of experience with thinking
about Perl and C++ and we intend to use the lessons
he's learned one way or another."

Will Perl 6 have specs?

• "Yeah. I don't know how strict a spec it will be from the
language design point of view. I'm not really big on that
sort of spec and there is some value to using the
reference implementation approach..."

Will you rename the local operator?

• "Yeah, I think we ought to do that. It confuses people when
we call it local."

Perl 6
Copyright © Damian Conway
February 2001 92

Will there be changes to Perl's OO
model?

• "We're going to be standardizing the way that objects
are set up. Not that we're going to be undoing all the
flexibility that you have right now, but you'll have some
standard ways that will be easier and more efficient.
Perl 5 by design made it easy to use objects, but not easy
to write object classes. We'd like to make it easy to write
object classes."

What about garbage collection?

• "When you see all the new languages coming out and
they all have a garbage collector and that helps them fit
together into browsers and things like that better, you
start thinking, maybe we ought to think about that."

• "It's becoming obvious that we need a real garbage
collector, either one of our own or we need to be able to
relate to one that is supplied."

93 Perl 6
Copyright © Damian Conway

February 2001

How about multiline comments?

• "Multiline comments in Perl. I'm sorry, I was
brainwashed by the Ada rationale. Ada has comments
to the end of the line and I think that if your editor can't
put a row of sharps down the left, then you need a better
editor."

Will Perl 6 have strong typing?

• "You'll be able to get nice declarations like this:

 my num $pi :const = 3;

• And similarly if you have homogenous arrays or hashes,
you'd like to be able to declare the type of all the
elements and have compact storage..."

What about threads?

• "My current leaning is that I really like the new
ithreads model because I think it simplifies the way you
can think about it...[it's] is more like a fork inside the
process. [But] I do expect that both models [ithreads
and pthreads] will be there, up to and including sharing
everything.

Perl 6
Copyright © Damian Conway
February 2001 94

Can you hint at any other language
changes that you're considering?

• "There's really no reason why formats should be in the
core anymore. They should be in a module."

• "There are things that could be done perhaps to clean up
[the] ambiguities of the indirect object syntax."

• "Ther are various languages with a cleaner object
interface to their IO..."

• "You could have [optional] strict-type checking if you
wanted."

• We intend to get rid of quite a few of those strange
global variables.

• It would be great to have higher-resolution time values.
I think they should be floating point."

95 Perl 6
Copyright © Damian Conway

February 2001

What will happen to Perl 5?

• "...one thing I want to make clear about this Perl 6
activity is that we're not abandoning Perl 5 any time
soon. We don't know how long this Perl 6 will take.
There are still some people using Perl 4 out there."

What about Perl 7?

• One of the proposals, one of the RFCs was that Perl 6
should be the last version of Perl. The idea is that if we
make Perl 6 sufficiently flexible, then there's no need for
Perl 7, because you can always bend the full language
into whatever you want it to be.

Predictions

• These suggestions of likely features have been
made by various members of the Perl Illuminati
(most notable Nathan Torkington, Chris Nandor,
and Kirrily Robert)

• They should be considered merely "possible"

Perl 6
Copyright © Damian Conway
February 2001 96

• Fewer special global variables (especially
punctuation variables)

• All deprecated features removed

• No more typeglobs

• Filehandles become objects

• String interpolation of subroutine and method calls

• Extended subroutine prototyping and optional
type enforcement for subroutine parameters

• wantarray becomes a more generic want

• More applications development support: web,
XML, CORBA

• Internals more modular and easier to maintain

• Rewrite of the Artistic License

• Perl's parser and lexer written in Perl, using Perl
regular expressions

97 Perl 6
Copyright © Damian Conway

February 2001

• Perl compiler and interpreter systems will be able
to emit C, Java, and C# code

• XS replaced with something much easier to use
(possibly the Inline module)

• Completely object-oriented exception handling

• Overloadable logic operators

• reduce operator to facilitate functional
programming styles.

• Full Unicode support for data and code, including
the ability to declare lexically-scoped Unicode
operators

Guesses

• These are my own considered views on what we
might also see in Perl 6

• They should be considered "wild, utterly baseless
speculation, no better than wish-fulfilment
fantasies"

Perl 6
Copyright © Damian Conway
February 2001 98

• Proper encapsulation of objects and support for
Design-by-Contract

• Hierarchical constructors and destructors

• Method delegation and multimethod dispatch

• Higher-order functions

• Selective AUTOLOAD-ing of subroutines

• Overloadable && and || operators

• List-returning built-ins can also return named
values in a hash

• Lazy evaluation of subroutine arguments

• Pattern matching on input streams

• Pseudo-hashes must die!

The final word

• I asked Larry what was the one message he most
wanted me to convey to you

99 Perl 6
Copyright © Damian Conway

February 2001

• He replied:

• "My basic message right now is that we're going to take
the time to do it right. What we want Perl to be in 2
years is a language that will be good for another 20
years."

• That's something we can all look forward to

6. Resources

• http://www.perl.org/perl6/
(Offical Perl 6 site)

• http://infotrope.net/
opensource/software/perl6/
(Unoffical Perl 6 site)

• http://dev.perl.org/
(Perl 6 repository)

• http://www.perl.com/
 pub/2000/10/23/soto2000.html
(Larry’s TPC4 speech)

Perl 6
Copyright © Damian Conway
February 2001 100

• http://technetcast.com/
 tnc_play_stream.html?stream_id=375
(Larry’s Atlanta Linux Showcase speech)

• http://slashdot.org/
 articles/00/07/20/210229.shtml
(Geekdom's reaction to the Perl 6 announcement)

• http://www.perl.com/
 pub/2000/11/perl6rfc.html
(A critique of the RFC process)

• http://www.perl.com/
 pub/2000/11/jarkko.html
(A rebuttal of the above critique)

• http://history.perl.com/
(The Perl timeline)

• http://www.etla.org/retroperl/

http://mirrors.valueclick.com/
 perl/really-ancient-perls

http://mirrors.valueclick.com/
backup.pause

(Archives of former versions of Perl)

