
Regular Expressions

"11:15. Restate my assumptions:

1. Mathematics is the language of nature.
2. Everything around us can be represented and understood through numbers.
3. If you graph these numbers, patterns emerge. Therefore: There are patterns everywhere in nature."

- Max Cohen in Pi, 1998

Whether or not you agree that Max's assumptions give rise to his conclusion is your own opinion, but
his case is much easier to follow in the field of computers – there are certainly patterns everywhere in
programming.

Regular expressions allow us look for patterns in our data. So far we've been limited to checking a single
value against that of a scalar variable or the contents of an array or hash. By using the rules outlined in
this chapter, we can use that one single value (or pattern) to describe what we're looking for in more
general terms: we can check that every sentence in a file begins with a capital letter and ends with a full
stop, find out how many times James Bond's name is mentioned in 'Goldfinger', or learn if there are any
repeated sequences of numbers in the decimal representation of greater than five in length.

However, regular expressions are a very big area – they're one of the most powerful features of Perl.
We're going to break our treatment of them up into six sections:

❑ Basic patterns

❑ Special characters to use

❑ Quantifiers, anchors and memorizing patterns

❑ Matching, substituting, and transforming text using patterns

❑ Backtracking

❑ A quick look at some simple pitfalls

Generally speaking, if you want to ask perl something about a piece of text, regular expressions
are going to be your first port of call – however, there's probably one simple question burning in
your head…

Chapter 5

148

What Are They?
The term "Regular Expression" (now commonly abbreviated to "RegExp" or even "RE") simply refers
to a pattern that follows the rules of syntax outlined in the rest of this chapter. Regular expressions are
not limited to perl – Unix utilities such as sed and egrep use the same notation for finding patterns in
text. So why aren't they just called 'search patterns' or something less obscure?

Well, the actual phrase itself originates from the mid-fifties when a mathematician called Stephen
Kleene developed a notation for manipulating 'regular sets'. Perl's regular expressions have grown and
grown beyond the original notation and have significantly extended the original system, but some of
Kleene's notation remains, and the name has stuck.

Patterns
History lessons aside, it's all about identifying patterns in text. So what constitutes a pattern? And how
do you compare it against something?

The simplest pattern is a word – a simple sequence of characters – and we may, for example, want to
ask perl whether a certain string contains that word. Now, we can do this with the techniques we have
already seen: We want to split the string into separate words, and then test to see if each word is the one
we're looking for. Here's how we might do that:

#!/usr/bin/perl
match1.plx
use warnings;
use strict;

my $found = 0;
$_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

my $sought = "people";

foreach my $word (split) {
if ($word eq $sought) {

$found = 1;
last;

}
}

if ($found) {
print "Hooray! Found the word 'people'\n";

}

Sure enough the program returns success:

>perl match1.plx
Hooray! Found the word 'people'
>

But that's messy! It's complicated, and it's slow to boot! Worse still, the split function (which breaks
each of our lines up into a list of 'words' – we'll see more of this, later on in the chapter) actually keeps all
the punctuation – the string 'you' wouldn't be found in the above, whereas 'you...' would. This looks
like a hard problem, but it should be easy. Perl was designed to make easy tasks easy and hard things
possible, so there should be a better way to do this. This is how it looks using a regular expression:

Regular Expressions

149

#!/usr/bin/perl
match1.plx
use warnings;
use strict;

$_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

if ($_ =~ /people/) {

print "Hooray! Found the word 'people'\n";
}

This is much, much easier and yeilds the same result. We place the text we want to find between
forward slashes – that's the regular expression part – that's our pattern, what we're trying to match. We
also need to tell perl which particular string we're looking for in that pattern. We do this with the =~
operator. This returns 1 if the pattern match was successful (in our case, whether the character sequence
'people' was found in the string) and the undefined value if it wasn't.

Before we go on to more complicated patterns, let's just have a quick look at that syntax. As we noted
previously, a lot of Perl's operations take $_ as a default argument, and regular expressions are one such
operation. Since we have the text we want to test in $_, we don't need to use the =~ operator to 'bind'
the pattern to another string. We could write the above even more simply:

$_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

if (/people/) {
print "Hooray! Found the word 'people'\n";

}

Alternatively, we might want to test for the pattern not matching – the word not being found.
Obviously, we could say unless (/people/), but if the text we're looking at isn't in $_, we may also
use the negative form of that =~ operator, which is !~. For example:

#!/usr/bin/perl
nomatch.plx
use warnings;
use strict;

my $gibson =
"Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

if ($gibson !~ /fish/) {
print "There are no fish in William Gibson.\n";

}

True to form, for cyberpunk books that don't regularly involve fish, we get the result.

>perl nomatch.plx
There are no fish in William Gibson.
>

Literal text is the simplest regular expression of all to look for, but we needn't look for just the one word
– we could look for any particular phrase. However, we need to make sure that we exactly match all the
characters: words (with correct capitalization), numbers, punctuation, and even whitespace:

Chapter 5

150

#!/usr/bin/perl
match2.plx
use warnings;
use strict;

$_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

if (/I do/) {
print "'I do' is in that string.\n";

}

if (/sometimes Case/) {
print "'sometimes Case' matched.\n";

}

Let's run this program and see what happens:

>perl match2.plx
'I do' is in that string.
>

The other string didn't match, even though those two words are there. This is because everything in a
regular expression has to match the string, from start to finish: first "sometimes", then a space, then
"Case". In $_, there was a comma before the space, so it didn't match exactly. Similarly, spaces inside
the pattern are significant:

#!/usr/bin/perl
match3.plx
use warnings;
use strict;

my $test1 = "The dog is in the kennel";
my $test2 = "The sheepdog is in the field";

if ($test1 =~ / dog/) {
print "This dog's at home.\n";

}

if ($test2 =~ / dog/) {
print "This dog's at work.\n";

}

This will only find the first dog, as perl was looking for a space followed by the three letters, 'dog':

>perl match3.plx
This dog's at home.
>

So, for the moment, it looks like we shall have to specify our patterns with absolute precision. As
another example, look at this:

#!/usr/bin/perl
match4.plx
use warnings;
use strict;

Regular Expressions

151

$_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";
if (/case/) {

print "I guess it's just the way I'm made.\n";
} else {

print "Case? Where are you, Case?\n";
}

> perl match4.plx
Case? Where are you, Case?
>

Hmm, no match. Why not? Because we asked for a small 'c' when we had a big 'C' – regexps are
(if you'll pardon the pun) case-sensitive. We can get around this by asking perl to compare
insensitively, and we do this by putting an 'i' (for 'insensitive') after the closing slash. If we alter
the code above as follows:

if (/case/i) {
print "I guess it's just the way I'm made.\n";

} else {
print "Case? Where are you, Case?\n";

}

then we find him:

>perl match4.plx
I guess it's just the way I'm made.
>

This 'i' is one of several modifiers that we can add to the end of the regular expression to change its
behavior slightly. We'll see more of them later on.

Interpolation
Regular expressions work a little like double-quoted strings; variables and metacharacters are
interpolated. This allows us to store patterns in variables and determine what we are matching when we
run the program – we don't need to have them hard-coded in:

Try it out – Pattern Tester

This program will ask the user for a pattern and then test to see if it matches our string. We can use this
throughout the chapter to help us test the various different styles of pattern we'll be looking at:

#!/usr/bin/perl
matchtest.plx
use warnings;
use strict;

$_ = q("I wonder what the Entish is for 'yes' and 'no'," he thought.);
Tolkien, Lord of the Rings

print "Enter some text to find: ";
my $pattern = <STDIN>;
chomp($pattern);

Chapter 5

152

if (/$pattern/) {
print "The text matches the pattern '$pattern'.\n";

} else {
print "'$pattern' was not found.\n";

}

Now we can test out a few things:

> perl matchtest.plx
Enter some text to find: wonder
The text matches the pattern 'wonder'.

> perl matchtest.plx
Enter some text to find: entish
'entish' was not found.

> perl matchtest.plx
Enter some text to find: hough
The text matches the pattern 'hough'.

> perl matchtest.plx
Enter some text to find: and 'no',
The text matches the pattern 'and 'no''.

Pretty straightforward, and I'm sure you could all spot those not in $_ as well.

How It Works

matchtest.plx has its basis in the three lines:

my $pattern = <STDIN>;
chomp($pattern);

if (/$pattern/) {

We're taking a line of text from the user. Then, since it will end in a new line, and we don't necessarily
want to find a new line in our pattern, we chomp it away. Now we do our test.

Since we're not using the =~ operator, the test will be looking at the variable $_. The regular expression
is /$pattern/, and just like the double-quoted string "$pattern", the variable $pattern is
interpolated. Hence, the regular expression is purely and simply whatever the user typed in, once we've
got rid of the new line.

Escaping Special Characters
Of course, regular expressions can be more than just words and spaces. The rest of this chapter is
going to be about the various ways we can specify more advanced matches – where portions of the
match are allowed to be one of a number of characters, or where the match must occur at a certain
position in the string. To do this, we'll be describing the special meanings given to certain characters
– called metacharacters – and look at what these meanings are and what sort of things we can express
with them.

Regular Expressions

153

At this stage, we might not want to use their special meanings – we may want to literally match the
characters themselves. As you've already seen with double-quoted strings, we can use a backslash to
escape these characters' special meanings. Hence, if you want to match '...' in the above text, you
need your pattern to say '\.\.\.'. For example:

> perl matchtest.plx
Enter some text to find: Ent+
The text matches the pattern 'Ent+'.

> perl matchtest.plx
Enter some text to find: Ent\+
'Ent\+' was not found.

We'll see later why the first one matched – due to the special meaning of +.

These are the characters that are given special meaning within a regular expression,
which you will need to backslash if you want to use literally:

. * ? + [] () { } ^ $ | \

Any other characters automatically assume their literal meanings.

You can also turn off the special meanings using the escape sequence \Q. After perl sees \Q, the 14
special characters above will automatically assume their ordinary, literal meanings. This remains the
case until perl sees either \E or the end of the pattern.

For instance, if we wanted to adapt our matchtest program just to look for literal strings, instead of
regular expressions, we could change it to look like this:

if (/\Q$pattern\E/) {

Now the meaning of + is turned off:

> perl matchtest.plx
Enter some text to find: Ent+
'Ent+' was not found.
>

Note that all \Q does is turn off the regular expression magic of those 14 characters above – it doesn't
stop, for example, variable interpolation.

Don't forget to change this back again: We'll be using matchtest.plx throughout the chapter,
to demonstrate the regular expressions we look at. We'll need that magic fully functional!

Anchors
So far, our patterns have all tried to find a match anywhere in the string. The first way we'll extend our
regular expressions is by dictating to perl where the match must occur. We can say 'these characters
must match the beginning of the string' or 'this text must be at the end of the string'. We do this by
anchoring the match to either end.

Chapter 5

154

The two anchors we have are ^, which appears at the beginning of the pattern anchor a match to the
beginning of the string, and $ which appears at the end of the pattern and anchors it to the end of the
string. So, to see if our quotation ends in a full stop – and remember that the full stop is a special
character – we say something like this:

>perl matchtest.plx
Enter some text to find: \.$
The text matches the pattern '\.$'.

That's a full stop (which we've escaped to prevent it being treated as a special character) and a dollar
sign at the end of our pattern – to show that this must be the end of the string.

Try, if you can, to get into the habit of reading out regular expressions in English. Break them into
pieces and say what each piece does. Also remember to say that each piece must immediately follow the
other in the string in order to match. For instance, the above could be read 'match a full stop
immediately followed by the end of the string'.

If you can get into this habit, you'll find that reading and understanding regular expressions becomes a
lot easier, and you'll be able to 'translate' back into Perl more naturally as well.

Here's another example: do we have a capital I at the beginning of the string?

> perl matchtest.plx
Enter some text to find: ^I
'^I' was not found.
>

We use ^ to mean 'beginning of the string', followed by an I. In our case, though, the character at the
beginning of the string is a ", so our pattern does not match. If you know that what you're looking for
can only occur at the beginning or the end of the match, it's extremely efficient to use anchors. Instead
of searching through the whole string to see whether the match succeeded, perl only needs to look at a
small portion and can give up immediately if even the first character does not match.

Let's see one more example of this, where we'll combine looking for matches with looking through the
lines in a file:

Try it out : Rhyming Dictionary

Imagine yourself as a poor poet. In fact, not just poor, but downright bad – so bad, you can't even think
of a rhyme for 'pink'. So, what do you do? You do what every sensible poet does in this situation, and
you write the following Perl program:

#!/usr/bin/perl
rhyming.plx
use warnings;
use strict;

my $syllable = "ink";
while (<>) {

print if /$syllable$/;
}

Regular Expressions

155

We can now feed it a file of words, and find those that end in 'ink':

>perl rhyming.plx wordlist.txt
blink
bobolink
brink
chink
clink
>

For a really thorough result, you'll need to use a file containing every word in the dictionary – be
prepared to wait though if you do! For the sake of the example however, any text-based file will do
(though it'll help if it's in English). A bobolink, in case you're wondering, is a migratory American
songbird, otherwise known as a ricebird or reedbird.

How It Works

With the loops and tests we learned in the last chapter, this program is really very easy:

while (<>) {
print if /$syllable$/;

}

We've not looked at file access yet, so you may not be familiar with the while(<>){...}
construction used here. In this example it opens a file that's been specified on the command line, and
loops through it, one line at a time, feeding each one into the special variable $_ – this is what we'll
be matching.

Once each line of the file has been fed into $_, we test to see if it matches the pattern, which is our
syllable, 'ink', anchored to the end of the line (with $). If so, we print it out.

The important thing to note here is that perl treats the 'ink' as the last thing on the line, even though
there is a new line at the end of $_. Regular expressions typically ignore the last new line in a string –
we'll look at this behavior in more detail later.

Shortcuts and Options
All this is all very well if we know exactly what it is we're trying to find, but finding patterns means
more than just locating exact pieces of text. We may want to find a three-digit number, the first word on
the line, four or more letters all in capitals, and so on.

We can begin to do this using character classes – these aren't just single characters, but something that
signifies that any one of a set of characters is acceptable. To specify this, we put the characters we
consider acceptable inside square brackets. Let's go back to our matchtest program, using the same
test string:

$_ = q("I wonder what the Entish is for 'yes' and 'no'," he thought.);

> perl matchtest.plx
Enter some text to find: w[aoi]nder
The text matches the pattern 'w[aoi]nder'.
>

Chapter 5

156

What have we done? We've tested whether the string contains a 'w', followed by either an 'a', an 'o', or
an 'i', followed by 'nder'; in effect, we're looking for either of 'wander', 'wonder', or 'winder'. Since the
string contains 'wonder', the pattern is matched.

Conversely, we can say that everything is acceptable except a given sequence of characters – we can
'negate the character class'. To do this, the character class should start with a ^, like so:

> perl matchtest.plx
Enter some text to find: th[^eo]
'th[^eo]' was not found.
>

So, we're looking for 'th' followed by something that is neither an 'e' or an 'o'. But all we have is 'the'
and 'thought', so this pattern does not match.

If the characters you wish to match form a sequence in the character set you're using – ASCII or
Unicode, depending on your perl version – you can use a hyphen to specify a range of characters,
rather than spelling out the entire range. For instance, the numerals can be represented by the character
class [0-9]. A lower case letter can be matched with [a-z]. Are there any numbers in our quote?

> perl matchtest.plx
Enter some text to find: [0-9]
'[0-9]' was not found.
>

You can use one or more of these ranges alongside other characters in a character class, so long as they
stay inside the brackets. If you wanted to match a digit and then a letter from 'A' to 'F', you would say
[0-9][A-F]. However, to match a single hexadecimal digit, you would write [0-9A-F] or
[0-9A-Fa-f] if you wished to include lower-case letters.

Some character classes are going to come up again and again: the digits, the letters, and the various
types of whitespace. Perl provides us with some neat shortcuts for these. Here are the most common
ones, and what they represent:

Shortcut Expansion Description

\d [0-9] Digits 0 to 9.

\w [0-9A-Za-z_] A 'word' character allowable in a Perl variable name.

\s [\t\n\r] A whitespace character that is, a space, a tab, a newline or
a return.

also, the negative forms of the above:

Shortcut Expansion Description

\D [^0-9] Any non-digit.

\W [^0-9A-Za-z_] A non-'word' character.

\S [^ \t\n\r] A non-blank character.

Regular Expressions

157

So, if we wanted to see if there was a five-letter word in the sentence, you might think we could do this:

> perl matchtest.plx
Enter some text to find: \w\w\w\w\w
The text matches the pattern '\w\w\w\w\w'.
>

But that's not right – there are no five-letter words in the sentence! The problem is, we've only asked for
five letters in a row, and any word with at least five letters contains five in a row will match that
pattern. We actually matched 'wonde', which was the first possible series of five letters in a row. To
actually get a five-letter word, we might consider deciding that the word must appear in the middle of
the sentence, that is, between two spaces:

> perl matchtest.plx
Enter some text to find: \s\w\w\w\w\w\s
'\s\w\w\w\w\w\s' was not found.
>

Word Boundaries
The problem with that is, when we're looking at text, words aren't always between two spaces. They can
be followed by or preceded by punctuation, or appear at the beginning or end of a string, or otherwise
next to non-word characters. To help us properly search for words in these cases, Perl provides the
special \b metacharacter. The interesting thing about \b is that it doesn't actually match any character
in particular. Rather, it matches the point between something that isn't a word character (either \W or
one of the ends of the string) and something that is (a word character), hence \b for boundary. So, for
example, to look for one-letter words:

> perl matchtest.plx
Enter some text to find: \s\w\s
'\s\w\s' was not found.

> perl matchtest.plx
Enter some text to find: \b\w\b
The text matches the pattern '\b\w\b'.

As the I was preceded by a quotation mark, a space wouldn't match it – but a word boundary does the
job. Later, we'll learn how to tell perl how many repetitions of a character or group of characters we
want to match without spelling it out directly.

What, then, if we wanted to match anything at all? You might consider something like [\w\W] or
[\s\S], for instance. Actually, this is quite a common operation, so Perl provides an easy way of
specifying it – a full stop. What about an 'r' followed by two characters – any two characters – and
then a 'h'?

> perl matchtest.plx
Enter some text to find: r..h
The text matches the pattern 'r..h'.
>

Is there anything after the full stop?

> perl matchtest.plx
Enter some text to find: \..
'\..' was not found.
>

Chapter 5

158

What's that? One backslashed full stop to mean a full stop, then a plain one to mean 'anything at all'.

Posix and Unicode Classes
Perl 5.6.0 introduced a few more character classes into the mix – first, those defined by the POSIX
(Portable Operating Systems Interface) standard, which are therefore present in a number of other
applications. The more common character classes here are:

Shortcut Expansion Description

[[:alpha:]] [a-zA-Z] An alphabetic character.

[[:alnum:]] [0-9A-Za-z] An alphabetic or numeric character.

[[:digit:]] \d A digit, 0-9.

[[:lower:]] [a-z] A lower case letter.

[[:upper:]] [A-Z] An upper case letter.

[[:punct:]] [!"#$%&'()*+,-
./:;<=>?@\[\\\]^_`{|}~]

A punctuation character – note the
escaped characters [, \, and].

The Unicode standard also defines 'properties', which apply to some characters. For instance, the
'IsUpper' property can be used to match any upper-case character, in whichever language or
alphabet. If you know the property you are trying to match, you can use the syntax \p{} to match
it, for instance, the upper-case character is \p{IsUpper}.

Alternatives
Instead of giving a series of acceptable characters, you may want to say 'match either this or that'. The
'either-or' operator in a regular expression is the same as the bitwise 'or' operator, |. So, to match either
'yes' or 'maybe' in our example, we could say this:

> perl matchtest.plx
Enter some text to find: yes|maybe
The text matches the pattern 'yes|maybe'.
>

That's either 'yes' or 'maybe'. But what if we wanted either 'yes' or 'yet'? To get alternatives on
part of an expression, we need to group the options. In a regular expression, grouping is always
done with parentheses:

> perl matchtest.plx
Enter some text to find: ye(s|t)
The text matches the pattern 'ye(s|t)'.
>

If we have forgotten the parentheses, we would have tried to match either 'yes' or 't'. In this case, we'd
still get a positive match, but it wouldn't be doing what we want – we'd get a match for any string with a
't' in it, whether the words 'yes' or 'yet' were there or not.

Regular Expressions

159

You can match either 'this' or 'that' or 'the other' by adding more alternatives:

> perl matchtest.plx
Enter some text to find: (this)|(that)|(the other)
'(this)|(that)|(the other)' was not found.
>

However, in this case, it's more efficient to separate out the common elements:

> perl matchtest.plx
Enter some text to find: th(is|at|e other)
'th(is|at|e other)' was not found.

You can also nest alternatives. Say you want to match one of these patterns:

❑ 'the' followed by whitespace or a letter,

❑ 'or'

You might put something like this:

> perl matchtest.plx
Enter some text to find: (the(\s|[a-z]))|or
The text matches the pattern '(the(\s|[a-z]))|or'.
>

It looks fearsome, but break it down into its components. Our two alternatives are:

❑ the(\s|[a-z])

❑ or

The second part is easy, while the first contains 'the' followed by two alternatives: \s and [a-z].
Hence 'either "the" followed by either a whitespace or a lower case letter, or "or"'. We can, in fact, tidy
this up a little, by replacing (\s|[a-z]) with the less cluttered [\sa-z].

> perl matchtest.plx
Enter some text to find: (the[\sa-z])|or
The text matches the pattern '(the[\sa-z])|or'.
>

Repetition
We've now moved from matching a specific character to a more general type of character – when we
don't know (or don't care) exactly what the character will be. Now we're going to see what happens
when we want to talk about a more general quantity of characters: more than three digits in a row; two
to four capital letters, and so on. The metacharacters that we use to deal with a number of characters in
a row are called quantifiers.

Chapter 5

160

Indefinite Repetition

The easiest of these is the question mark. It should suggest uncertainty – something may be there, or it
may not. That's exactly what it does: stating that the immediately preceding character(s) – or
metacharacter(s) – may appear once, or not at all. It's a good way of saying that a particular character or
group is optional. To match the word 'he or she', you can put:

> perl matchtest.plx
Enter some text to find: \bs?he\b
The text matches the pattern '\bs?he\b'.
>

To make a series of characters (or metacharacters) optional, group them in parentheses as before. Did
he say 'what the Entish is' or 'what the Entish word is'? Either will do:

> perl matchtest.plx
Enter some text to find: what the Entish (word)?is
The text matches the pattern 'what the Entish (word)?is'.
>

Notice that we had to put the space inside the group: otherwise we end up with two spaces between
'Entish' and 'is', whereas our text only has one:

> perl matchtest.plx
Enter some text to find: what the Entish (word)? is
'what the Entish (word)? is' was not found.
>

As well as matching something one or zero times, you can match something one or more times. We do
this with the plus sign – to match an entire word without specifying how long it should be, you can say:

> perl matchtest.plx
Enter some text to find: \b\w+\b
The text matches the pattern '\b\w+\b'.
>

In this case, we match the first available word – I.

If, on the other hand, you have something which may be there any number of times but might not be
there at all – zero or one or many – you need what's called 'Kleene's star': the * quantifier. So, to find a
capital letter after any – but possibly no – spaces at the start of the string, what would you do? The start
of the string, then any number of whitespace characters, then a capital:

> perl matchtest.plx
Enter some text to find: ^\s*[A-Z]
'^\s*[A-Z]' was not found.
>

Of course, our test string begins with a quote, so the above pattern won't match, but, sure enough, if you
take away that first quote, the pattern will match fine.

Regular Expressions

161

Let's review the three qualifiers:

/bea?t/ Matches either 'beat' or 'bet'

/bea+t/ Matches 'beat', 'beaat', 'beaaat'…

/bea*t/ Matches 'bet', 'beat', 'beaat'…

Novice Perl programmers tend to go to town on combinations of dot and star, and the results often
surprise them, particularly when it comes to searching-and-replacing. We'll explain the rules of the
regular expression matcher shortly, but bear the following in mind:

A regular expression should hardly ever start or finish with a starred character.

You should also consider the fact that .* and .+ in the middle of a regular expression will match as
much of your string as they possibly can. We'll look more at this 'greedy' behavior later on.

Well-Defined Repetition

If you want to be more precise about how many times a character or roups of characters might be
repeated, you can specify the maximum and minimum number of repeats in curly brackets. '2 or 3
spaces' can be written as follows:

> perl matchtest.plx
Enter some text to find: \s{2,3}
'\s{2,3}' was not found.
>

So we have no doubled or trebled spaces in our string. Notice how we construct that – the minimum, a
comma, and the maximum, all inside braces. Omitting either the maximum or the minimum signifies 'or
more' and 'or fewer' respectively. For example, {2,} denotes '2 or more', while {,3} is '3 or fewer'. In
these cases, the same warnings apply as for the star operator.

Finally, you can specify exactly how many things are to be in a row by simply putting that number
inside the curly brackets. Here's the five-letter-word example tidied up a little:

> perl matchtest.plx
Enter some text to find: \b\w{5}\b
'\b\w{5}\b' was not found.
>

Summary Table
To refresh your memory, here are the various metacharacters we've seen so far:

Metacharacter Meaning

[abc] any one of the characters a, b, or c.

[^abc] any one character other than a, b, or c.

Table continued on following page

Chapter 5

162

Metacharacter Meaning

[a-z] any one ASCII character between a and z.

\d \D a digit; a non-digit.

\w \W a 'word' character; a non-'word' character.

\s \S a whitespace character; a non-whitespace character.

\b the boundary between a \w character and a \W character.

. any character (apart from a new line).

(abc) the phrase 'abc' as a group.

? preceding character or group may be present 0 or 1 times.

+ preceding character or group is present 1 or more times.

* preceding character or group may be present 0 or more times.

{x,y} preceding character or group is present between x and y times.

{,y} preceding character or group is present at most y times.

{x,} preceding character or group is present at least x times.

{x} preceding character or group is present x times.

Backreferences
What if we want to know what a certain regular expression matched? It was easy when we were
matching literal strings: we knew that 'Case' was going to match those four letters and nothing else. But
now, what matches? If we have /\w{3}/, which three word characters are getting matched?

Perl has a series of special variables in which it stores anything that's matched with a group in
parentheses. Each time it sees a set of parentheses, it copies the matched text inside into a numbered
variable – the first matched group goes in $1, the second group in $2, and so on. By looking at these
variables, which we call the backreference variables, we can see what triggered various parts of our
match, and we can also extract portions of the data for later use.

First, though, let's rewrite our test program so that we can see what's in those variables:

Try it out : A Second Pattern Tester

#!/usr/bin/perl
matchtest2.plx
use warnings;
use strict;

$_ = '1: A silly sentence (495,a) *BUT* one which will be useful. (3)';

print "Enter a regular expression: ";
my $pattern = <STDIN>;
chomp($pattern);

Regular Expressions

163

if (/$pattern/) {
print "The text matches the pattern '$pattern'.\n";
print "\$1 is '$1'\n" if defined $1;
print "\$2 is '$2'\n" if defined $2;
print "\$3 is '$3'\n" if defined $3;
print "\$4 is '$4'\n" if defined $4;
print "\$5 is '$5'\n" if defined $5;

} else {
print "'$pattern' was not found.\n";

}

Note that we use a backslash to escape the first 'dollar' symbol in each print statement, thus
displaying the actual symbol, while leaving the second in each to display the contents of the
appropriate variable.

We've got our special variables in place, and we've got a new sentence to do our matching on. Let's see
what's been happening:

> perl matchtest2.plx
Enter a regular expression: ([a-z]+)
The text matches the pattern '([a-z]+)'.
$1 is 'silly'

> perl matchtest2.plx
Enter a regular expression: (\w+)
The text matches the pattern '(\w+)'.
$1 is '1'

> perl matchtest2.plx
Enter a regular expression: ([a-z]+)(.*)([a-z]+)
The text matches the pattern '([a-z]+)(.*)([a-z]+)'.
$1 is 'silly'
$2 is ' sentence (495,a) *BUT* one which will be usefu'
$3 is 'l'

> perl matchtest2.plx
Enter a regular expression: e(\w|n\w+)
The text matches the pattern 'e(\w|n\w+)'.
$1 is 'n'

How It Works

By printing out what's in each of the groups, we can see exactly what caused perl to start and stop
matching, and when. If we look carefully at these results, we'll find that they can tell us a great deal
about how perl handles regular expressions.

How the Engine Works
We've now seen most of the syntax behind regular expression matching and plenty of examples of it in
action. The code that does all the matching is called perl's 'regular expression engine'. You might now
be wondering about the exact rules applied by this engine when determining whether or not a piece of
text matches. And how much of it matches what. From what our examples have shown us, let us make
some deductions about the engine's operation.

Chapter 5

164

Our first expression, ([a-z]+) plucked out a set of one-or-more lower-case letters. The first such set
that perl came across was 'silly'. The next character after 'y' was a space, and so no longer matched
the expression.

❑ Rule one: Once the engine starts matching, it will keep matching a character at a time for as
long as it can. Once it sees something that doesn't match, however, it has to stop. In this
example, it can never get beyond a character that is not a lower case letter. It has to stop as
soon as it encounters one.

Next, we looked for a series of word characters, using (\w+). The engine started looking at the
beginning of the string and found one, '1'. The next character was not a word character (it was a colon),
and so the engine had to stop.

❑ Rule two: Unlike me, the engine is eager. It's eager to start work and eager to finish, and it
starts matching as soon as possible in the string; if the first character doesn't match, try and
start matching from the second. Then take every opportunity to finish as quickly as possible.

Then we tried this:([a-z]+)(.*)([a-z]+). The result we got with this was a little strange. Let's look
at it again:

> perl matchtest2.plx
Enter a regular expression: ([a-z]+)(.*)([a-z]+)
The text matches the pattern '([a-z]+)(.*)([a-z]+)'.
$1 is 'silly'
$2 is ' sentence (495,a) *BUT* one which will be usefu'
$3 is 'l'
>

Our first group was the same as what matched before – nothing new there. When we could no longer
match lower case letters, we switched to matching anything we could. Now, this could take up the rest
of the string, but that wouldn't allow a match for the third group. We have to leave at least one lower-
case letter.

So, the engine started to reverse back along the string, giving characters up one by one. It gave up
the closing bracket, the 3, then the opening bracket, and so on, until we got to the first thing that
would satisfy all the groups and let the match go ahead – namely a lower-case letter: the 'l' at the
end of 'useful'.

From this, we can draw up the third rule:

❑ Rule three: Like me, in this case, the engine is greedy. If you use the + or * operators, they
will try and steal as much of the string as possible. If the rest of the expression does not match,
it grudgingly gives up a character at a time and tries to match again, in order to find the fullest
possible match.

We can turn a greedy match into a non-greedy match by putting the ? operator after either the plus or
star. For instance, let's turn this example into a non-greedy version: ([a-z]+)(.*?)([a-z]+). This
gives us an entirely different result:

Regular Expressions

165

> perl matchtest2.plx
Enter a regular expression: ([a-z]+)(.*?)([a-z]+)
The text matches the pattern '([a-z]+)(.*?)([a-z]+)'.
$1 is 'silly'
$2 is ' '
$3 is 'sentence'
>

Now we've shut off rule three, rule two takes over. The smallest possible match for the second group
was a single space. First, it tried to get nothing at all, but then the third group would be faced with a
space. This wouldn't match. So, we grudgingly accept the space and try and finish again. This time the
third group has some lower case letters, and that can match as well.

What if we turn off greediness in all three groups, and say this: ([a-z]+?)(.*?)([a-z]+?)

> perl matchtest2.plx
Enter a regular expression: ([a-z]+?)(.*?)([a-z]+?)
The text matches the pattern '([a-z]+?)(.*?)([a-z]+?)'.
$1 is 's'
$2 is ''
$3 is 'i'
>

What about this? Well, the smallest possible match for the first group is the 's' of silly. We asked it to
find one character or more, and so the smallest it could find was one. The second group actually
matched no characters at all. This left the third group facing an 'i', which it took to complete the match.

Our last example included an alternation:

> perl matchtest2.plx
Enter a regular expression: e(\w|n\w+)
The text matches the pattern 'e(\w|n\w+)'.
$1 is 'n'
>

The engine took the first branch of the alternation and matched a single character, even though the
second branch would actually satisfy greed. This leads us onto the fourth rule:

❑ Rule four: Again like me, the regular expression engine hates decisions. If there are two
branches, it will always choose the first one, even though the second one might allow it to gain
a longer match.

To summarize:

The regular expression engine starts as soon as it can, grabs as much as it can, then
tries to finish as soon as it can, while taking the first decision available to it.

Chapter 5

166

Working with RegExps
Now that we've matched a string, what do we do with it? Well, sometimes it's just useful to know
whether a string contains a given pattern or not. However, a lot of the time we're going to be doing
search-and-replace operations on text. We'll explain how to do that here. We'll also cover some of the
more advanced areas of dealing with regular expressions.

Substitution
Now we know all about matching text, substitution is very easy. Why? Because all of the clever things
are in the 'search' part, rather than the 'replace': all the character classes, quantifiers and so on only
make sense when matching. You can't substitute, say, a word with any number of digits. So, all we need
to do is take the 'old' text, Our match, and tell perl what we want to replace it with. This we do with the
s/// operator.

The s is for 'substitute' – between the first two slashes, we put our regular expression as before. Before
the final slash, we put our text replacement. Just as with matching, we can use the =~ operator to apply
it to a certain string. If this is not given, it applies to the default variable $_:

#!/usr/bin/perl
subst1.plx
use warnings;
use strict;

$_ = "Awake! Awake! Fear, Fire, Foes! Awake! Fire, Foes! Awake!";
Tolkien, Lord of the Rings

s/Foes/Flee/;
print $_,"\n";

>perl subst1.plx
Awake! Awake! Fear, Fire, Flee! Awake! Fire, Foes! Awake!
>

Here we have substituted the first occurrence of 'Foes' with the word 'Flee'. Had we wanted to change
every occurrence, we would have needed to use another modifier. Just as the /i modifier for matching
case-insensitively, the /g modifier on a substitution acts globally:

#!/usr/bin/perl
subst1.plx
use warnings;
use strict;

$_ = "Awake! Awake! Fear, Fire, Foes! Awake! Fire, Foes! Awake!";
Tolkien, Lord of the Rings

s/Foes/Flee/g;
print $_,"\n";

> perl subst1.plx
Awake! Awake! Fear, Fire, Flee! Awake! Fire, Flee! Awake!
>

Regular Expressions

167

Like the left-hand side of the substitution, the right-hand side also works like a double-quoted string and
is thus subject to variable interpolation. One useful thing, though, is that we can use the backreference
variables we collected during the match on the right hand side. So, for instance, to swap the first two
words in a string, we would say something like this:

#!/usr/bin/perl
subst2.plx
use warnings;
use strict;

$_ = "there are two major products that come out of Berkeley: LSD and UNIX";

Jeremy Anderson

s/(\w+)\s+(\w+)/$2 $1/;
print $_, "?\n";

>perl subst2.plx
are there two major products that come out of Berkeley: LSD and UNIX?
>

What would happen if we tried doing that globally? Well, let's do it and see:

#!/usr/bin/perl
subst2.plx
use warnings;
use strict;

$_ = "there are two major products that come out of Berkeley: LSD and UNIX";

Jeremy Anderson

s/(\w+)\s+(\w+)/$2 $1/g;
print $_, "?\n";

>perl subst2.plx
are there major two that products out come Berkeley of: and LSD UNIX?
>

Here, every word in a pair is swapped with its neighbor. When processing a global match, perl always
starts where the previous match left off.

Changing Delimiters
You may have noticed that // and s/// looks like q// and qq//. Well, just like q// and qq//, we
can change the delimiters when matching and substituting to increase the readability of our regular
expressions. The same rules apply: Any non-word character can be the delimiter, and paired delimiters
such as <>, (), {}, and [] may be used – with two provisos.

First, if you change the delimiters on //, you must put an m in front of it. (m for 'match'). This is so that
perl can still recognize it as a regular expression, rather than a block or comment or anything else.

Chapter 5

168

Second, if you use paired delimiters with substitution, you must use two pairs:

s/old text/new text/g;

becomes:

s{old text}{new text}g;

You may, however, leave spaces or new lines between the pairs for the sake of clarity:

s{old text}
{new text}g;

The prime example of when you would want to do this is when you are dealing with file paths, which
contain a lot of slashes. If you are, for instance, moving files on your Unix system from
/usr/local/share/ to /usr/share/, you may want to munge the file names like this:

s/\/usr\/local\/share\//\/usr\/share\//g;

However, it's far easier and far less ugly to change the delimiters in this case:

s#/usr/local/share/#/usr/share/#g;

Modifiers
We've already seen the /i modifier used to indicate that a match should be case insensitive. We've also
seen the /g modifier to apply a substitution. What other modifiers are there?

❑ /m – treat the string as multiple lines. Normally, ^ and $ match the very start and very end of
the string. If the /m modifier is in play, then they will match the starts and ends of individual
lines (separated by \n). For example, given the string: "one\ntwo", the pattern /^two$/
will not match, but /^two$/m will.

❑ /s – treat the string as a single line. Normally, . does not match a new line character; when
/s is given, then it will.

❑ /g – as well as globally replacing in a substitution, allows us to match multiple times. When
using this modifier, placing the \G anchor at the beginning of the regexp will anchor it to the
end point of the last match.

❑ /x – allow the use of whitespace and comments inside a match.

Regular expressions can get quite fiendish to read at times. The /x modifier is one way to stop them
becoming so. For instance, if you're matching a string in a log file that contains a time, followed by a
computer name in square brackets, then a message, the expression you'll create to extract the
information may easily end up looking like this:

Time in $1, machine name in $2, text in $3
/^([0-2]\d:[0-5]\d:[0-5]\d)\s+\[([^\]]+)\]\s+(.*)$/

Regular Expressions

169

However, if you use the /x modifier, you can stretch it out as follows:

/^
(# First group: time

[0-2]\d
:
[0-5]\d
:
[0-5]\d
)

\s+
\[# Square bracket

(# Second group: machine name
[^\]]+ # Anything that isn't a square bracket
)

\] # End square bracket

\s+
(# Third group: everything else
.*
)

$/x

Another way to tidy this up is to put each of the groups into variables and interpolate them:

my $time_re = '([0-2]\d:[0-5]\d:[0-5]\d)';
my $host_re = '\[[^\]]+)\]';
my $mess_re = '(.*)';

/^$time_re\s+$host_re\s+$mess_re$/;

Split
We briefly saw split earlier on in the chapter, where we used it to break up a string into a list of
words. In fact, we only saw it in a very simple form. Strictly speaking, it was a bit of a cheat to use it at
all. We didn't see it then, but split was actually using a regular expression to do its stuff!

Using split on its own is equivalent to saying:

split /\s+/, $_;

which breaks the default string $_ into a list of substrings, using whitespace as a delimiter. However, we
can also specify our own regular expression: perl goes through the string, breaking it whenever the
regexp matches. The delimiter itself is thrown away.

For instance, on the UNIX operating system, configuration files are sometimes a list of fields separated
by colons. A sample line from the password file looks like this:

kake:x:10018:10020::/home/kake:/bin/bash

Chapter 5

170

To get at each field, we can split when we see a colon:

#!/usr/bin/perl
split.plx
use warnings;
use strict;

my $passwd = "kake:x:10018:10020::/home/kake:/bin/bash";
my @fields = split /:/, $passwd;
print "Login name : $fields[0]\n";
print "User ID : $fields[2]\n";
print "Home directory : $fields[5]\n";

>perl split.plx
Login name : kake
User ID : 10018
Home directory : /home/kake
>

Note that the fifth field has been left empty. Perl will recognize this as an empty field, and the
numbering used for the following entries takes account of this. So $fields[5] returns /home/kake,
as we'd otherwise expect. Be careful though – if the line you are splitting contains empty fields at the
end, they will get dropped.

Join
To do the exact opposite, we can use the join operator. This takes a specified delimiter and interposes
it between the elements of a specified array. For example:

#!/usr/bin/perl
join.plx
use warnings;
use strict;

my $passwd = "kake:x:10018:10020::/home/kake:/bin/bash";
my @fields = split /:/, $passwd;
print "Login name : $fields[0]\n";
print "User ID : $fields[2]\n";
print "Home directory : $fields[5]\n";

my $passwd2 = join "#", @fields;
print "Original password : $passwd\n";
print "New password : $passwd2\n";

>perl join.plx
Login name : kake
User ID : 10018
Home directory : /home/kake
Original password : kake:x:10018:10020::/home/kake:/bin/bash
New password : kake#x#10018#10020##/home/kake#/bin/bash
>

Regular Expressions

171

Transliteration
While we're looking at regular expressions, we should briefly consider another operator. While it's not
directly associated with regexps, the transliteration operator has a lot in common with them and adds a
very useful facility to the matching and substitution techniques we've already seen.

What this does is to correlate the characters in its two arguments, one by one, and use these pairings to
substitute individual characters in the referenced string. It uses the syntax tr/one/two/ and (as with
the matching and substitution operators) references the special variable $_ unless otherwise specified
with =~ or !~. In this case, it replaces all the 'o's in the referenced string with 't's, all the 'n's with 'w's,
and all the 'e's with 'o's.

Let's say you wanted to replace, for some reason, all the numbers in a string with letters. You might say
something like this:

$string =~ tr/0123456789/abcdefghij/;

This would turn, say, "2011064" into "cabbage". You can use ranges in transliteration but not in any of
the character classes. We could write the above as:

$string =~ tr/0-9/a-j/;

The return value of this operator is, by default, the number of characters matched with those in the first
argument. You can therefore use the transliteration operator to count the number of occurrences of
certain characters. For example, to count the number of vowels in a string, you can use:

my $vowels = $string =~ tr/aeiou//;

Note that this will not actually substitute any of the vowels in the variable $string. As the second
argument is blank, there is no correlation, so no substitution occurs. However, the transliteration
operator can take the /d modifier, which will delete occurrences on the left that do not have a
correlating character on the right. So, to get rid of all spaces in a string quickly, you could use this line:

$string =~ tr/ //d;

Common Blunders
There are a few common mistakes people tend to make when writing regexps. We've already seen
that /a*b*c*/ will happily match any string at all, since it matches each letter zero times. What else
can go wrong?

❑ Forgetting To Group
/Bam{2}/ will match 'Bamm', while /(Bam){2}/ will match 'BamBam', so be careful when
choosing which one to use. The same goes for alternation: /Simple|on/ will match 'Simple'
and 'on', while /Sim(ple|on)/ will match both 'Simple' and 'Simon' Group each option
separately.

❑ Getting The Anchors Wrong
^ goes at the beginning, $ goes at the end. A dollar anywhere else in the string makes perl try
and interpolate a variable.

Chapter 5

172

❑ Forgetting To Escape Special Characters.
Do you want them to have a special meaning? These are the characters to be careful of: . *
? + [] () { } ^ $ | and of course \ itself.

❑ Not Counting from Zero
The first entry in an array is given the index zero.

❑ Counting from Zero
I know, I know! All along I've been telling you that computers start counting from zero.
Nevertheless, there's always the odd exception – the first backreference is $1. Don't blame
Perl though – it took this behavior from a language called awk which used $1 as the first
reference variable.

More Advanced Topics
We've not actually plumbed the depths of the regular expression language syntax – Perl has a habit of
adding wilder and more bizarre features to it on a regular basis. All of the more off-the-wall extensions
begin with a question mark in a group – this is supposed to make you stop and ask yourself: 'Do I really
want to do this?'

Some of these are experimental and may change from perl version to version (and may soon
disappear altogether), but there are others that aren't so tricky. Some of these are extremely useful, so
let's dive in!

Inline Comments
We've already seen how we can use the /x modifier to add comments and whitespace to our regular
expressions. We can also do this with the (?#) pattern:

/^Today's (?# This is ignored, by the way)date:/

Unfortunately, there's no way to have parentheses inside these comments, since perl closes the comment
as soon as it sees a closing bracket. If you want to have longer or more detailed comments, you should
consider using the /x modifier instead.

Inline Modifiers
If you are reading patterns from a file or constructing them from inside your code, you have no way of
adding a modifier to the end of the regular expression operator. For example:

#!/usr/bin/perl
inline.plx
use warnings;
use strict;

my $string = "There's more than One Way to do it!";

print "Enter a test expression: ";
my $pat = <STDIN>;
chomp($pat);

if ($string =~ /$pat/) {
print "Congratulations! '$pat' matches the sample string.\n";
} else {
print "Sorry. No match found for '$pat'";
}

Regular Expressions

173

If we run this and momentarily forgot how our sample string had been capitalized, we might get this:

>perl inline.plx
Enter a test expression: one way to do it!
Sorry. No match found for 'one way to do it!'
>

So how can we make this case-insensitive? The solution is to use an inline modifier, the syntax for which
is (?i). This will make the enclosing group match case-insensitively. Therefore we have:

>perl inline.plx
Enter a test expression: (?i)one way to do it!
Congratulations! '(?i)one way to do it!' matches the sample string.
>

If, conversely, you have a modifier in place that you temporarily want to get rid of, you can say, for
example, (?-i) to turn it off. If we have this:

/There's More Than ((?-i)One Way) To Do It!/i;

the words 'One Way' alone are matched case-sensitively.

Note that you can also inline the /m, /s, and /x modifiers in the same way.

Grouping without Backreferences
Parentheses perform the function of grouping and populating the backreference variables. If you have a
portion of your match in parentheses, it will, if successful, be placed in one of the numbered variables.
However, there may be times when you only want to use brackets for grouping. For example, you're
expecting the first backreference to contain something important, but there may be some preceding text
in the way. You could have something like this:

/(X-)?Topic: (\w+)/;

You can't be certain whether your first defined backreference is going to end up in $1 or $2 – it
depends on whether the 'X-' part is present or not. For example, if we tried to match the string "Topic:
the weather", we'd find that $1 was left undefined. If we'd tried to do something with its contents, we'd
get the warning:

Use of uninitialized value in concatenation

Now that's not necessarily a problem here. After all, we'll find our word in $2 whether or not there's
anything preceding "Topic: ". Surely we can just be careful not to use $1?

But what if there's more than one optional field? Say we had an expression that left all but the 2nd and 6th

groups optional. We then have to look in $2 for our first word and $6 for our second, while $1, $3, $4,
and $5 are left undefined. This really isn't good programming style and is asking for trouble! We really
shouldn't backreference fields if we don't need to.

Chapter 5

174

We can resolve this problem very simply, by adding the characters ?: like this:

/(?:X-)?Topic: (\w+)/;

This ensures that the first set of brackets will now group only and not fill a backreference variable. Our
word will always be put into $1.

Lookaheads and Lookbehinds
Sometimes you may want to say something along the lines of 'substitute the word "fish" with "cream",
but only if the next word is "cake".' You can do this very simply by saying:

s/fish cake/cream cake/

What does this do? The regular expression engine scans a referenced string, looking for a match on "fish
cake" On finding one, it substitutes the text "cream cake". Not too bad – it does the job. In this case it's
not too big a deal that it has to substitute five characters from each match with five identical characters
from the substitution string. It's not hard to see how this sort of inefficiency could really start to bog a
program down if we used substitutions excessively.

What we want is a way of putting an assertion into the match – a 'match the text only if the next word
is "cake"' clause – without actually matching the assertion itself. Having matched "fish", we really just
want to look ahead, to see if it says " cake" (and give the match a thumbs-up if it does), then forget
about "cake" altogether.

In life, that's not so easy. Fortunately in Perl we have an operator for just this sort of thing:

/fish(?= cake)/

will match exactly what we want – it looks for "fish", does a positive lookahead on " cake", and matches
"fish" only if that succeeds. For example:

#!/usr/bin/perl
look1.plx
use warnings;
use strict;

$_ = "fish cake and fish pie";
print "Our original order was ", $_, "\n";

s/fish(?= cake)/cream/;
print "Actually, make that ", $_, " instead.\n";

will return

>perl look1.plx
Our original order was fish cake and fish pie
Actually, make that cream cake and fish pie instead.
>

We can also look ahead negatively, by using an exclamation mark instead of the equals sign:

/fish(?! cake)/

Regular Expressions

175

which will match "fish" only if the following word is not " cake". If we adapt look1.plx like so:

#!/usr/bin/perl
look2.plx
use warnings;
use strict;

$_ = "fish cake and fish pie";
print "Our original order was ", $_, "\n";

s/fish(?! cake)/cream/;
print "Actually, make that ", $_, " instead.\n";

then sure enough, it's "fish pie" that gets matched this time and not "fish cake".

>perl look2.plx
Our original order was fish cake and fish pie
Actually, make that fish cake and cream pie instead.
>

Lookaheads are very powerful as you'll soon discover if you experiment a little, particularly when you
start to use less specific expressions (using metacharacters) with them.

However, we may also wish to look at the text preceding a matched pattern. We therefore have a
similar pair of lookbehind operators. We now use the < sign to point 'behind' the match, matching
"cake" only if "fish" precedes it. So to find all those boring old fish cakes, we use:

/(?<=fish)cake/

but to find all the cream cakes and chocolate cakes, do this:

/(?<!fish)cake/

Let's have fish and chips instead of our fish cakes and cream doughnuts instead of cream cakes:

#!/usr/bin/perl
look3.plx
use warnings;
use strict;

$_ = "fish cake and cream cake";
print "Our original order was ", $_, "\n";

s/(?<=fish)cake/and chips/;
print "No, wait. I'll have ", $_, " instead\n";

s/(?<!fish)cake/slices/;
print "Actually, make that ", $_, ", will you?\n";

>perl look3.plx
Our original order was fish cake and cream cake
No, wait. I'll have fish and chips and cream cake instead
Actually, make that fish and chips and cream slices, will you?
>

Chapter 5

176

One very important thing to note about lookbehind assertions is that they can only handle fixed-width
expressions. So while you can use most of the metacharacters, indeterminate quantifiers like ., ?, and *
aren't allowed.

Backreferences (again)
Finally, in our tour of regular expressions, let's look again at backreferences. Suppose you want to find
any repeated words in a string. How would you do it? You might think about doing this:

if (/\b(\w+) $1\b/) {
print "Repeated word: $1\n";

}

Except, this doesn't work, because $1 is only set when the match is complete. In fact, if you have
warnings turned on, you'll be alerted to the fact that $1 is undefined every time. In order to match
while still inside the regular expression, you need to use the following syntax:

if (/\b(\w+) \1\b/) {
print "Repeated word: $1\n";

}

However, when you're replacing, you'll get a warning if you try and use the \<number> syntax on the
wrong side. It'll work, but you'll be told "\1 better written as $1".

Summary
Regular expressions are quite possibly the most powerful means at your disposal of looking for patterns
in text, extracting sub-patterns and replacing portions of text. They're the basis of any text shuffling you
do in Perl, and they should be your first port of call when you need to do some string manipulation.

In this chapter, we've seen how to match simple text, different classes of text, and then different
amounts of text. We've also seen how to provide alternative matches, how to refer back to portions of
the match, and how to substitute and transliterate text.

The key to learning and understanding regular expressions is to be able to break them down into their
component parts and unravel the language, translating it piecewise into English. Once you can fluently
read out the intention of a complex regular expression, you're well on your way to creating powerful
matches of your own.

You can find a summary of regular expression syntax in Appendix A. Section 6 of the Perl FAQ (at
www.perl.com) contains a good selection of regexp hints and tricks.

Regular Expressions

177

Exercises
1. Write out English descriptions of the following regular expressions, and describe what the

operations actually do:

$var =~ /(\w+)$/

$code !~ /^#/

s/#{2,}/#/g

2. Using the contents of the gettysburg.txt file (provided in the download for Chapter 6), use
regular expressions to do the following, and print out the result. (Tip: use a here-document to
store the text in your file):

a. Count the number of occurences of the word 'we'.

b. Reformat the text, so that each sentences is displayed as a separate paragraph.

c. Check that there are no multiple spaces in the text, replacing any with single spaces.

3. When we use groups, the // operator returns a list of all the text strings that have been
matched. Modify our example program matchtest2.plx, so that it produces its output from this
list, rather than using special variables.

4. If we want to sort a list of words into alphabetical order, one simple and quite effective way is
to write a program that performs a 'bubble sort': working through the whole list, it compares
each pair of consecutive words; if it finds them in the wrong order, it swaps them over. On
reaching the end of the list it repeats the process – unless the previous scan didn't yield any
swaps, in which case the list is already properly ordered. Use regular expressions along with
the other techniques you've seen so far, and write this program so that it will work with a list
of words separated by newline characters. One small hint – the pos() function may come in
useful here. You can use this to adjust the position of the \G boundary, for example: pos($var)
= 10 will set it just after the tenth character in $var. A subsequent global search will therefore
start from this point.

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

