Special Variables

Default Variables and Parameters

Variable Description

S_ This global scalar acts as a default variable for function arguments and pattern-
searching space — with many common functions, if an argument is left
unspecified, $_ will be automatically assigned, so, for example, the following
statements are equivalent:
chop ($_) and chop
$_ =~ m/expr/ and m/expr/

@_ The elements of this array are used to store function arguments, which can be
accessed (from within a function definition) as $_ [num] . The array is
automatically local to each function.

@ARGV The elements of this array contain the command line arguments intended for use
by the script.

$ARGV This contains the name of the current file when reading from the null filehandle
<>. (<> is a literal, and defaults to standard input, <STDIN>, if no arguments are
supplied from elements in @ARGV).

Appendix B

Regular Expression Variables (all read-only)

Variable

Description

$ (num)

S&

S+

The scalar $n contains the substring matched to the n'th grouped subpattern

in the last pattern match, and remains in scope until the next pattern match
with subexpressions. It ignores matched patterns occurring in nested blocks that
are already exited. If there are no corresponding groups, then the undefined
value is returned.

This scalar contains the string matched by the last successful pattern match. Once
again, this won't include any strings matched in nested blocks. For example:

'UnicornNovember' =~ /Nov/;
print S$&;

will print Nov. For versions of perl since 5.005, this is not an expensive variable to
use.

This scalar holds the substring following whatever was matched by the last
successful pattern match. For example, if we say:

'UnicornNovember' =~ /Nov/;

$ ' will return ember.

This scalar holds the substring preceding whatever was matched by the last
successful pattern match. For example, if we say:

'UnicornNovember' =~ /Nov/;

$~ will return Unicorn.

This scalar holds the last substring matched to a grouped subpattern in the last
search. It comes in handy if you're not sure which of a set of alternative subpatterns
matched. For example, if you successfully match on / (ab) *| (bc*) /, then $+
stores either $1 or $2, depending on whether it was the first or second grouped
subpattern that matched. For example, following:

'UnicornNovember' =~ /(Nov) | (Dec)/;
$+ will return Nov.

This array lists the back pointer positions (in the referenced string) of the last
successful match. The first element @+ [0] contains the pointer's starting position
following that match - each subsequent value corresponds to its position just affer
having matched the corresponding grouped subpattern. For example, following:

'UnicornNovember' =~ /(U)\w? (N)/;
@+ will return (8,1,8), while following:
'UnicornNovember' =~ /(Uni)\w? (Nov)/;

@+ will return (10,3,10).

532

Special Variables

Variable Description

@- This array lists the front pointer positions (in the referenced string) of the last
successful match. The first element @- [0] contains the pointer's starting position
prior to that match - each subsequent value corresponds to its position just before
having matched the corresponding grouped subpattern. For example following:

'UnicornNovember' =~ /(Uni)\w? (Nov)/;
@- will return (0,0,7), while following:
'UnicornNovember' =~ /(Uni) (\w?) (Nov)/;

@- will return (0,0,3,7).

Input/Output Variables

Variable Description

$. This scalar holds the current line number of the last filehandle on which you
performed either a read, seek, or tell. Itis reset when the filehandle is closed.

NB: <> never does an explicit close, so line numbers increase across ARGV files — also,
localizing $. has the effect of also localizing perl's notion of 'the last read filehandle'.

$/ This scalar stores the input record separator, which by default is the newline \n. If
it's set to "", input will be read one paragraph at a time.

$\ This scalar stores the output record separator for print — normally this will just
output consecutive records without any separation (unless explicitly included). This
variable allows you to set it for yourself. For example:

$\ = "_mn,
print "one";
print "two";
will print one-two-.

S| This corresponds to an internal flag used by perl to determine whether buffering
should be used on a program's write/read operations to/from files. If the value is
TRUE (S| is greater than 0), buffering is disabled.

$ This is the output field separator for print - normally this will just output
consecutive fields without any separation (unless explicitly included). This variable
allows you to set it for yourself. For example:

g, = n-n;

print "one","two";

will print one-two.

Table continued on following page

533

Appendix B

Variable

Description

$||

This is the output field separator for array values interpolated into a double-
quoted string (or similar interpreted string) — the default is a space. For example:

$|| = n_n.
r
@ar = ("one", "two", "three");

print "e@ar";

will print one-two-three.

Filehandle/format Variables

Variable

Description

S#

$|

o\°

v
1]

This holds the output format for printed numbers.
NB: The use of thisvariable has been deprecated.

This corresponds to an internal flag used by perl to determine whether buffering
should be used on a program's write/read operations to/from files — if its value is
TRUE ($ | is greater than 0), then buffering is disabled.

The current page number of the selected output channel.
The current page length, measured in printable lines — the default is 60.

This only becomes important when a top-of-page format is invoked — ifa write
command doesn't fit into a given number of lines, then the top-of-page format is
used, before any printing past the page length continues.

The number of lines left on a page — when a page is finished, it's given the value of
$=, and is then decremented for each line outputted.

The currently selected format name — the default is the name of the filehandle.
The name of the top-of-page format.

The set of characters after which a string may be broken to fill continuation fields
(starting with *) in a format — default is' \n-'to break on whitespace or hyphens.

This holds a character that is used by a format's output to request a form feed —
default is \ f.

Error Variables

Variable Description

$? This holds the status value returned by the last pipe close, backtick (*) command,
or system () operator.

s@ This holds the syntax error message from the last eval () command - it evaluates

to null if the last eval () parsed and executed correctly (although the operations
you invoked may have failed in the normal fashion).

534

Special Variables

Variable Description

$! If used in a numeric context, this returns the current value of errno, with all the usual
caveats. (so you shouldn't depend on $! to have any particular value unless you've
got a specific error return indicating a system error.)

If used in a string context, it returns the corresponding system error string. You can
assign a set errno value to $! if, for instance, you want it to return the string for that
error number, or you want to set the exit value for the die () operator.

$"E This returns an extended error message, with information specific to the current
operating system. At the moment, this only differs from $! under VMS, OS/2, and
Win32 (and for MacPerl). On all other platforms, $*E is always the same as $!.

System Variables

Variable Description

$$ The process ID (pid) of the Perl process running the current script.
$< The real user ID (uid) of the current process.

$> The effective uid of the current process.

NB: $< and $> can only be swapped on machines supporting setreuid ().

$(The real group ID (gid) of the current process.

$) The effective group I1D (gid) of the current process.

$0 (zero) The name of the file containing the Perl script being executed.

$°X The name that the perl binary was executed as.

$1 The version number of the perl interpreter, including patchlevel / 1000 — can be

used to determine whether the interpreter executing a script is within the right range
of versions.

See also use VERSION and require VERSION for a way to fail if the interpreter

is too old.

$*0 The name of the operating system under which this copy of perl was built, as
determined during the configuration process — identical to $Config{'osname'}.

$°T The time at which the current script began running, in seconds since the beginning
of 1970. Values returned by -M, -A, and -C filetests are based on this value.

$°W The current value of the warning switch, either TRUE or FALSE.

SENV Your current environment — altering its value changes the environment for child
processes.

$SIG Used to set handlers for various signals.

535

Appendix B

Others

Variable Description

@INC A list of places to look for Perl scripts for evaluation by the do EXPR, require,
or use constructs.

$INC Contains entries for each filename that has been included via do or require. The

key is the specified filename, and the value the location of the file actually found.
The require command uses this array to determine whether a given file has
already been included.

536

Special Variables

537

Source code available at : www.wrox.com
Peer discussion at : lamplists.com

Also from Wrox
AsIElEie

)3

PROTESSIONAL PROFISSIONAL

Perl Perl

Programming _ Development

BEGINNING

Perl

http://mwww.wrox.com/books/1861003145.htm

lamplists.com

The Open Source Programmer’s Res ource Centre

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

