
Impatient Perl
version: 9 September 2010

Copyright 2004-2010 Greg London

 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

Cover Art (Front and Back) on the paperback version of Impatient Perl is excluded from
this license. Cover Art is Copyright Greg London 2004, All Rights Reserved.

For latest version of this work go to:
http://www.greglondon.com

1

http://www.greglondon.com/

Table of Contents
1 The Impatient Introduction to Perl..7

1.1 The history of perl in 100 words or less..7
1.2 Basic Formatting for this Document...7
1.3 Do You Have Perl Installed...8
1.4 Your First Perl Script, EVER..9
1.5 Default Script Header..9
1.6 Free Reference Material..10
1.7 Cheap Reference Material...10
1.8 Acronyms and Terms..10

2 Storage..11
2.1 Scalars...11

2.1.1 Scalar Strings...12
2.1.1.1 String Literals...12
2.1.1.2 Single quotes versus Double quotes..13
2.1.1.3 chomp...13
2.1.1.4 concatenation...13
2.1.1.5 repetition..13
2.1.1.6 length..13
2.1.1.7 substr..13
2.1.1.8 split...14
2.1.1.9 join...14
2.1.1.10 qw...15
2.1.1.11 Multi-Line Strings, HERE Documents..15

2.1.2 Scalar Numbers..16
2.1.2.1 Numeric Literals..16
2.1.2.2 Numeric Functions...16
2.1.2.3 abs..16
2.1.2.4 int...16
2.1.2.5 trigonometry (sin,cos)..17
2.1.2.6 exponentiation..17
2.1.2.7 sqrt..17
2.1.2.8 natural logarithms(exp,log)..18
2.1.2.9 random numbers (rand, srand)...18
2.1.3 Converting Between Strings and Numbers...19
2.1.3.1 Stringify...19

2.1.3.1.1 sprintf...19
2.1.3.2 Numify...20

2.1.3.2.1 oct...21
2.1.3.2.2 hex..21
2.1.3.2.3 Base Conversion Overview..21

2.1.4 Undefined and Uninitialized Scalars...22
2.1.5 Booleans..23

2

2.1.5.1 FALSE...24
2.1.5.2 TRUE...24
2.1.5.3 Comparators...25
2.1.5.4 Logical Operators...26

2.1.5.4.1 Default Values..27
2.1.5.4.2 Flow Control..27
2.1.5.4.3 Precedence..27
2.1.5.4.4 Assignment Precedence..27
2.1.5.4.5 Flow Control Precedence...28
2.1.5.4.6 Conditional Operator..28

2.1.6 References..29
2.1.7 Filehandles...31
2.1.8 Scalar Review..32

2.2 Arrays..32
2.2.1 scalar (@array)..33
2.2.2 push(@array, LIST)...34
2.2.3 pop(@array)...34
2.2.4 shift(@array)..35
2.2.5 unshift(@array, LIST)..35
2.2.6 foreach (@array)..36
2.2.7 sort(@array)...37
2.2.8 reverse(@array)...38
2.2.9 splice(@array)...39
2.2.10 Undefined and Uninitialized Arrays..39

2.3 Hashes...39
2.3.1 exists ($hash{$key})..41
2.3.2 delete ($hash{key})...42
2.3.3 keys(%hash)...42
2.3.4 values(%hash)..43
2.3.5 each(%hash)...43

2.4 List Context...47
2.5 References...49

2.5.1 Named Referents...50
2.5.2 References to Named Referents...50
2.5.3 Dereferencing..50
2.5.4 Anonymous Referents...51
2.5.5 Complex Data Structures...53

2.5.5.1 Autovivification...54
2.5.5.2 Multidimensional Arrays...55
2.5.5.3 Deep Cloning, Deep Copy...56
2.5.5.4 Data Persistence...56

2.5.6 Stringification of References...56
2.5.7 The ref() function...57

3 Control Flow...58
3.1 Labels..60
3.2 last LABEL;..60
3.3 next LABEL;...60

3

3.4 redo LABEL;...60
4 Packages and Namespaces and Lexical Scoping..61

4.1 Package Declaration..61
4.2 Declaring Package Variables With our...62
4.3 Package Variables inside a Lexical Scope..62
4.4 Lexical Scope..63
4.5 Lexical Variables...63
4.6 Garbage Collection..65

4.6.1 Reference Count Garbage Collection..65
4.6.2 Garbage Collection and Subroutines...66

4.7 Package Variables Revisited...67
4.8 Calling local() on Package Variables..68

5 Subroutines..69
5.1 Subroutine Sigil...69
5.2 Named Subroutines...69
5.3 Anonymous Subroutines...70
5.4 Data::Dumper and subroutines..70
5.5 Passing Arguments to/from a Subroutine..70
5.6 Accessing Arguments inside Subroutines via @_...71
5.7 Dereferencing Code References..71
5.8 Implied Arguments..72
5.9 Subroutine Return Value...73
5.10 Returning False..73
5.11 Using the caller() Function in Subroutines..74
5.12 The caller() function and $wantarray..75
5.13 Context Sensitive Subroutines with wantarray()...75

6 Compiling and Interpreting...76
7 Code Reuse, Perl Modules..78
8 The use Statement...78
9 The use Statement, Formally..79

9.1 The @INC Array...79
9.2 The use lib Statement..80
9.3 The PERL5LIB and PERLLIB Environment Variables...80
9.4 The require Statement...80
9.5 MODULENAME -> import (LISTOFARGS)..81
9.6 The use Execution Timeline..82

10 bless()..83
11 Method Calls...85

11.1 Inheritance...86
11.2 use base..87
11.3 INVOCANT->isa(BASEPACKAGE)..88
11.4 INVOCANT->can(METHODNAME)...88
11.5 Interesting Invocants...88

12 Procedural Perl..90
13 Object Oriented Perl..90

13.1 Class..94
13.2 Polymorphism...94

4

13.3 SUPER...95
13.4 Object Destruction...97

14 Object Oriented Review..98
14.1 Modules...98
14.2 use Module..98
14.3 bless / constructors..98
14.4 Methods...99
14.5 Inheritance...99
14.6 Overriding Methods and SUPER..99

15 CPAN..100
15.1 CPAN, The Web Site..100
15.2 CPAN, The Perl Module...100
15.3 Plain Old Documentation (POD) and perldoc...103
15.4 Creating Modules for CPAN with h2xs..103

16 The Next Level..104
17 Command Line Arguments...104

17.1 @ARGV..105
17.2 Getopt::Declare...107

17.2.1 Getopt::Declare Sophisticated Example..108
18 File Input and Output..110

18.1 open...110
18.2 close...110
18.3 read..110
18.4 write...111
18.5 File Tests...112
18.6 File Globbing...112
18.7 File Tree Searching...113

19 Operating System Commands...114
19.1 The system() function..114
19.2 The Backtick Operator..114
19.3 Operating System Commands in a GUI..114

20 Regular Expressions..115
20.1 Variable Interpolation..116
20.2 Wildcard Example...117
20.3 Defining a Pattern..117
20.4 Metacharacters...118
20.5 Capturing and Clustering Parenthesis...120

20.5.1 $1, $2, $3, etc Capturing parentheses..120
20.5.2 Capturing parentheses not capturing...121

20.6 Character Classes..121
20.6.1 Metacharacters Within Character Classes...122

20.7 Shortcut Character Classes..122
20.8 Greedy (Maximal) Quantifiers..123
20.9 Thrifty (Minimal) Quantifiers...123
20.10 Position Assertions / Position Anchors...124

20.10.1 The \b Anchor..124
20.10.2 The \G Anchor...125

5

20.11 Modifiers...127
20.11.1 Global Modifiers..127
20.11.2 The m And s Modifiers..127
20.11.3 The x Modifier...129

20.12 Modifiers For m{} Operator...130
20.13 Modifiers for s{}{} Operator..130
20.14 Modifiers for tr{}{} Operator...130
20.15 The qr{} function..130
20.16 Common Patterns..130
20.17 Regexp::Common..131

21 Parsing with Parse::RecDescent..132
22 Perl, GUI, and Tk..135
23 GNU Free Documentation License...136

A quick explanation of the revision history.

I lost the original Open Office files for
“Impatient Perl”. To recover, I had to take the
PDF, copy and paste the text, and then manually
reformat the document to resemble its original
layout. It was painfully tedious, but the revision
on 17 February 2009 is that reconstructed version.

One of the problems with that version is that the
text had hard-returns coded into it from the
cut/paste. It might look like there's a four-line
paragraph on some page, but it's really four lines
with hard-coded “\n” at the end of each line.

The January 2010 version attempts to remove all the
hard-coded returns in the paragraph text and allow
the word processor to determine where to wrap the
text.

While I was working on that rev, I fixed a couple
of typos and tweaked a sentence or two.

Enjoy! Greg London

6

1 The Impatient Introduction to Perl
This document is for people who either want to learn perl or are already programming in perl and just
do not have the patience to scrounge for information to learn and use perl. This document should also
find use as a handy desk reference for some of the more
common perl related questions.

1.1 The history of perl in 100 words or less
In the mid 1980s, Larry Wall was working as a sys-admin and found that he needed to do a number of
common, yet oddball functions over and over again. And he did not like any of the scripting languages
that were around at the time, so he invented Perl. Version 1 was released circa 1987. A few changes
have occurred between then and now. The current version of Perl has exceeded 5.8.3 and is a highly
recommended upgrade.

Perl 6 is on the drawing board as a fundamental rewrite of the language. It is not available yet, and
probably will not be available for some time.

1.2 Basic Formatting for this Document
This document is formatted into text sections, code sections, and shell sections. This sentence is part of
a text section. Text sections will extend to the far left margin and will use a non-monospaced font. Text
sections contain descriptive text.

Code sections are indented.
They also use a monospaced font.
This is a code section, which represents
code to type into a script.
You will need to use a TEXT EDITOR,
not a WORD PROCESSOR to create these files.
Generally, the code is contained in one file,
and is executed via a shell command.

If the code section covers multiple files,
each file will be labeled.

###filename:MyFile.pm
This code will be placed in a
file called MyFile.pm

#!/usr/local/env perl
###filename:myscript.pl
This code will be placed in a file
called myscript.pl
The first line of myscript.pl will be the
line with #!/usr/local/env perl

7

> shell sections are indented like code sections
> shell sections also use monospaced fonts.
> shell sections differ from code sections in
> that shell sections start with a '>' character
> which represents a shell prompt.
> shell sections show commands to type on
> the command line.
> shell sections also show the output of a script,
> if any exists.
> In simple examples, the code is shown in a
> code section, immediately followed by the output
> from running the script. The command to run
> the script is dropped to save space.

As an example, the code for a simple "Hello World" script is shown here. It can be typed into a file of
any name. The name of the file is not important. The command to execute the script is not important
either. In this example, the code is important, and the output is important, so they are they only things
shown.

print "Hello World\n";
> Hello World

THIS DOCUMENT REFERS TO (LI/U)NIX PERL ONLY. Much of this will translate to Mac Perl
and Windows Perl, but the exact translation will be left as an exercise to the reader.

1.3 Do You Have Perl Installed
To find out if you have perl installed and its version:

> perl -v

You should have at least version 5.8.3. If you have an older version or if you have no perl installed at
all, you can download it for free from

http://www.cpan.org

CPAN is an acronym for Comprehensive Perl Archive Network. The CPAN site contains the latest perl
for download and installation, as well as a TON of perl modules for your use.

If you are a beginner, get your sys-admin to install perl for you. Even if you are not a beginner, get
your sys-admin to install perl for you.

8

http://www.cpan.org/

1.4 Your First Perl Script, EVER
Create a file called hello.pl using your favorite text editor. Type in the following:

#!/usr/bin/env perl
use warnings;
use strict; # comment
print "Hello World \n";

(The #! on the first line is sometimes pronounced "shebang")
(The .pl extension is simply a standard accepted extension for perl scripts.)
Run the script:

> perl hello.pl
Hello World

This calls perl and passes it the name of the script to execute. You can save yourself a little typing if
you make the file executable:

> chmod +x hello.pl

And then run the script directly.

> hello.pl
Hello World

If "." is not in your PATH variable, you will have to run the script by typing:

> ./hello.pl

HOORAY! Now go update your resume.

Anything from a # character to the end of the line is a comment.

1.5 Default Script Header
All the code examples in this document are assumed to have the following script header, unless
otherwise stated. It uses your PATH environment variable to determine which perl executable to run. If
you need to have different versions of perl installed on your system, you can control which version of
perl they will run by changing your PATH variable without having to change your script.

#!/usr/bin/env perl
use warnings;
use strict;
use Data::Dumper;

9

data::Dumper

Note that Data::Dumper takes some time to load and you wouldn't want
to use Data::Dumper on some timing-critical project. But for learning
perl with simple scripts, the execution speed isn't that high of a
priority. If you're writing a “real” script (i.e. one where time-to-
run and memory-usage are issues to be considered), then don't use
Data::Dumper by default, only use it if you really need it.

1.6 Free Reference Material
You can get quick help from the standard perl installation.

> perl -h
> perldoc
> perldoc -h
> perldoc perldoc

FAQs on CPAN: http://www.cpan.org/cpan-faq.html
Mailing Lists on CPAN: http://list.cpan.org
More free documentation on the web: http://www.perldoc.com
Still more free documentation on the web: http://learn.perl.org

1.7 Cheap Reference Material
"Programming Perl" by Larry Wall, Tom Christiansen, and Jon Orwant. Highly recommended book to
have handy at all times. It is sometimes referred to as the "Camel Book" by way of the camel drawing
on its cover. The publisher, O'Reilly, has printed enough computer books to choke a, well, camel, and
each one has a different animal on its cover. Therefore if you hear reference to some animal book, it is
probably an O'Reilly book. Well, unless its the "Dragon Book", because that refers to a book called
"Compilers" by Aho, Sethi, and Ullman.

1.8 Acronyms and Terms
Perl: Originally, "Pearl" shortened to "Perl" to gain status as a 4-letter word. Now considered an
acronym for Practical Extraction and Report Language, as well as Petty Eclectic Rubbish Lister. The
name was invented first. The acronyms followed. Note that this is "Perl" with a capital "P". The "perl"
with a lower case "p" refers to the executable found somewhere near /usr/local/bin/perl

CPAN: Comprehensive Perl Archive Network. See http://www.cpan.org for more.

DWIM: Do What I Mean. Once upon a time, the standard mantra for computer inflexibility was this: "I
really hate this darn machine, I wish that they would sell it. It never does what I want, but only what I
tell it." DWIM-iness is an attempt to embed perl with telepathic powers such that it can understand
what you wanted to write in your code even though you forgot to actually type it. Well, alright, DWIM
is just a way of saying the language was designed by some really lazy programmers so that you could
be even lazier than they were. (They had to write perl in C, so they could not be TOO lazy.)

AUTOVIVIFY: "auto" meaning "self". "vivify" meaning "alive". To bring oneself to life. Generally
applies to perl variables that can grant themselves into being without an explicit declaration from the

10

data::Dumper
data::Dumper
data::Dumper

programmer. Part of perl's DWIM-ness. "Autovivify" is a verb. The noun form is "autovivification".
Sometimes, autovivification is not what you meant your code to do, and for some reason, when "do
what I mean" meets autovivification in perl, autovivification wins.

And now, a Haiku:
Do What I Mean and
Autovivification
sometimes unwanted

TMTOWTDI: There is More Than One Way To Do It. An acknowledgment that any programming
problem has more than one solution. Rather than have perl decide which solution is best, it gives you
all the tools and lets you choose. This allows a programmer to select the tool that will let him get his
job done. Sometimes, it gives a perl newbie just enough rope to hang himself.

Foo Fighters: A phrase used around the time of WWII by radar operators to describe a signal that could
not be explained. Later became known as a UFO. This has nothing to do with perl, except that "foo" is
a common variable name used in perl.

Fubar: Another WWII phrase used to indicate that a mission had gone seriously awry or that a piece of
equipment was inoperative. An acronym for Fouled Up Beyond All Recognition and similar
interpretations. This has nothing to do with perl either, except that fubar somehow got mangled into
foobar, and perl is often awash in variables named "foo" and "bar", especially if the programmer
wishes to hide the fact that he did not understand his code well enough to come up with better names. If
you use a $foo variable in your code, you deserve to maintain it.

2 Storage
Perl has three basic storage types: Scalars, Arrays, and Hashes.
The most basic storage type is a Scalar.
Arrays and Hashes use Scalars to build more complex data types.

2.1 Scalars
Scalars are preceded with a dollar sign sigil. A "$" is a stylized "S".

sigil : A symbol. In Perl a sigil refers to the symbol in front of a variable.

Scalars can store Strings, Numbers (integers and floats), References, and Filehandles. Perl is smart
enough to know which type you are putting into a scalar and handle it.

my $diameter = 42; # The “my” keyword declares a lexical
my $pi = 3.1415; # variable. If you don't know what
my $initial = 'g'; # that means, don't worry about it,
my $name = 'John Doe'; # it will be explained later.
my $ref_to_name = \$name # Specifically, in section 4

11

Without "use strict;" and without declaring a variable with a "my", using a variable causes perl to
create one and initialize it to undef. This undef value will stringify to "" or numify to 0, depending how
the undefined variable is used. This is called autovivication. (Stringification and Numification are
covered later.)

Autovivify : to bring oneself to life.

In some situations, autovivication is handy. However, in certain situations, autovivification can be an
unholy monster.

my $circumference = $pie * $diameter;
oops, $pie doesn't exist. Autovivified to undef,
numified to 0, therefore $circumference is zero.

Without use warnings; use strict; perl will autovivify a new variable called "pie",
initialize it to zero, and assume that is what you meant to do. There is no reason that warnings and
strictness should not be turned on in your scripts.

2.1.1 Scalar Strings
Scalars can store strings. You do not have to declare the length of the string, perl just handles it for you
automatically.

2.1.1.1 String Literals
String literals must be in single or double quotes or you will get an error.

print hello;
Error: Unquoted string "hello" may clash with
reserved word

You can use single quotes or double quotes to set off a string literal:

my $name = 'mud';
my $greeting = "hello, $name\n";
print $greeting;
> hello, mud

You can also create a list of string literals using the qw() function.

my ($first,$last)=qw(John Doe);
print "first is '$first'\n";
print "last is '$last'\n";
> first is 'John'
> last is 'Doe'

12

2.1.1.2 Single quotes versus Double quotes
Single quoted strings are a "what you see is what you get" kind of thing.

my $name = 'mud';
print 'hello $name';
> hello $name

Double quotes means that you get SOME variable interpolation during string evaluation. Complex
variables, such as a hash lookup, will not be interpolated properly in double quotes.

my $name = 'mud';
print "hello $name \n";
> hello mud

Note: a double-quoted "\n" is a new-line character.

2.1.1.3 chomp
You may get rid of a newline character at the end of a string by chomp-ing the string. The chomp
function removes one new line from the end of the string even if there are multiple newlines at the end.
If there are no newlines, chomp leaves the string alone. The return value of chomp is what was
chomped (seldom used).

My $string = "hello world\n";
chomp($string);
warn "string is '$string' \n"
> string is 'hello world' ...

2.1.1.4 concatenation
String concatenation uses the period character "."

my $fullname = 'mud' . "bath";

2.1.1.5 repetition
Repeat a string with the "x" operator.

my $line = '-' x 80; # $line is eighty hypens

2.1.1.6 length
Find out how many characters are in a string with length().

my $len = length($line); # $len is 80

2.1.1.7 substr
substr (STRING_EXPRESSION, OFFSET, LENGTH);

13

Spin, fold, and mutilate strings using substr(). The substr function gives you fast access to get and
modify chunks of a string. You can quickly get a chunk of LENGTH characters starting at OFFSET
from the beginning or end of the string (negative offsets go from the end). The substr function then
returns the chunk.

my $chunk = substr('the rain in spain', 9, 2);
warn "chunk is '$chunk'";
> chunk is 'in' ...

The substr function can also be assigned to, replacing the chunk as well. You need a string contained in
a variable that can be modified, rather than using a constant literal in the example above.

my $string = 'the rain in spain';
substr($string, 9, 2) = 'beyond';
warn "string is '$string'";
> string is 'the rain beyond spain' ...

2.1.1.8 split
split(/PATTERN/, STRING_EXPRESSION,LIMIT);

Use the split function to break a string expression into components when the components are separated
by a common substring pattern. For example, tab separated data in a single string can be split into
separate strings.

my $tab_sep_data = "John\tDoe\tmale\t42";
my ($first,$last,$gender,$age)
= split(/\t/, $tab_sep_data);

You can break a string into individual characters by calling split with an empty string pattern "". The
/PATTERN/ in split() is a Regular Expression, which is complicated enough to get its own chapter.
However, some common regular expression PATTERNS for split are:

\t tab-separated data
\s+ whitespace-separated data
\s*,\s* comma-separated data

2.1.1.9 join
join('SEPARATOR STRING', STRING1, STRING2, ...);

Use join to stitch a list of strings into a single string.

my $string = join(" and ",
'apples', 'bananas', 'peaches');
warn "string is '$string'";
> string is 'apples and bananas and peaches'...

14

2.1.1.10 qw
The qw() function takes a list of barewords and quotes them for you.

my $string =
join(" and ", qw(apples bananas peaches));
warn "string is '$string'";
> string is 'apples and bananas and peaches'...

2.1.1.11 Multi-Line Strings, HERE Documents
Perl allows you to place a multi-line string in your code by using what it calls a "here document”.

My $string = <<”ENDOFDOCUMENT”;
Do What I Mean and
Autovivification
sometimes unwanted
ENDOFDOCUMENT

warn "string is '$string'”;
> string is 'Do What I Mean and
> Autovivification
> sometimes unwanted' at ...

The '<<' indicates a HERE document, followed by the name of the label indicating the end of the here
document. Enclosing the label in double quotes means that perl variables in the document will get
interpolated as strings. Enclosing the label in single quotes means that no string interpolation occurs.
Perl then reads the lines after the '<<' as string literal content until it sees the end of string label
positioned at the beginning of a line.

15

2.1.2 Scalar Numbers
Perl generally uses floats internally to store numbers. If you specify something that is obviously an
integer, it will use an integer. Either way, you simply use it as a scalar.

my $days_in_week = 7; # scalar => integer
my $temperature = 98.6; # scalar => float

2.1.2.1 Numeric Literals
Perl allows several different formats for numeric literals, including integer, floating point, and scientific
notation, as well as decimal, octal, and hexadecimal.
Binary numbers begin with "0b"
hexadecimal numbers begin with "0x"
Octal number begin with a "0"
All other numeric literals are assumed to be decimal.

my $solar_temp_c = 1.5e7; # centigrade
my $solar_temp_f = 27_000_000.0; # Fahrenheit
my $base_address = 01234567; # octal
my $high_address = 0xfa94; # hexadecimal
my $low_address = 0b100101; # binary

2.1.2.2 Numeric Functions

2.1.2.3 abs
Use abs to get the absolute value of a number.

my $var1 = abs(-3.4); # var1 is 3.4
my $var2 = abs(5.9); # var2 is 5.9

2.1.2.4 int
Use "int" to convert a floating point number to an integer. Note that this truncates everything after the
decimal point, which means you do NOT get rounding. Truncating means that positive numbers always
get smaller and negative numbers always get bigger.

my $price = 9.95;
my $dollars = int ($price);
dollars is 9, not 10! false advertising!
my $y_pos = -5.9;
my $y_int = int($y_pos);
y_int is -5 (-5 is "bigger" than -5.9)

16

If you want to round a float to the nearest integer, you will need to write a bit of code. One way to
accomplish it is to use sprintf:

my $price = 9.95;
my $dollars = sprintf("%.0f", $price);
dollars is 10

2.1.2.5 trigonometry (sin,cos)
The sin() and cos() functions return the sine and cosine of a value given in RADIANS. If you have a
value in DEGREES, multiply it by (pi/180) first.

my $angle = 45; # 45 deg
my $radians = $angle * (3.14 / 180); # .785 rad
my $sine_rad = sin($radians); # 0.707 Correct!
my $sine_deg = sin($angle); # 0.851 OOPS!

If you need inverse sine, inverse cosine, or tangent then use the Math::Trig module on CPAN.

2.1.2.6 exponentiation
Use the "**" operator to raise a number to some power.

my $seven_squared = 7 ** 2; # 49
my $five_cubed = 5 ** 3; #125
my $three_to_the_fourth = 3 ** 4; # 81
Use fractional powers to take a root of a number:
my $square_root_of_49 = 49 ** (1/2); # 7
my $cube_root_of_125 = 125 ** (1/3); # 5
my $fourth_root_of_81 = 81 ** (1/4); # 3

Standard perl cannot handle imaginary numbers. Use the Math::Complex module on CPAN.

2.1.2.7 sqrt
Use sqrt to take the square root of a positive number.

my $square_root_of_123 = sqrt(123); # 11.0905

17

2.1.2.8 natural logarithms(exp,log)

The exp function returns e to the power of the value given. To get e, call exp(1);

my $value_of_e = exp(1); # 2.7183
my $big_num= exp(42); # 2.7183 ** 42 = 1.7e18

The log function returns the inverse exp() function, which is to say, log returns the number to which
you would have to raise e to get the value passed in.

my $inv_exp = log($big_num); # inv_exp = 42

If you want another base, then use this subroutine:

sub log_x_base_b {return log($_[0])/log($_[1]);}
want the log base 10 of 12345
i.e. to what power do we need to raise the
number 10 to get the value of 12345?
my $answer = log_x_base_b(12345,10); # answer = 4.1

Note that inverse natural logs can be done with exponentiation, you just need to know the value of the
magic number e (~ 2.718281828). The exp function is straightforward exponentiation:

big_num = 2.7183 ** 42 = 1.7e18
my $big_num = $value_of_e ** 42;

Natural logarithms simply use the inverse of the value (i.e. 1/value) with exponentiation.

inv_exp = 2.7183 ** (1/1.7e18) = 42
my $inv_exp = $value_of_e ** (1/$big_num);

2.1.2.9 random numbers (rand, srand)
The rand function is a pseudorandom number generator (PRNG).

If a value is passed in, rand returns a number that satisfies (0 <= return <= input)

If no value is passed in, rand returns a number in the range (0 <= return < 1)

The srand function will seed the PRNG with the value passed in. If no value is passed in, srand will
seed the PRNG with something from the system that will give it decent randomness. You can pass in a
fixed value to guarantee the values returned by rand will always follow the same sequence (and
therefore are predictable). You should only need to seed the PRNG once. If you have a version of perl
greater than or equal to 5.004, you should not need to call it at all, because perl will call srand at
startup.

18

2.1.3 Converting Between Strings and Numbers
Many languages require the programmer to explicitly convert numbers to strings before printing them
out and to convert strings to numbers before performing arithmetic on them. Perl is not one of these
languages.

Perl will attempt to apply Do What I Mean to your code and just Do The Right Thing. There are two
basic conversions that can occur: stringification and numification.

2.1.3.1 Stringify
Stringify: Converting something other than a string to a string form.
Perl will automatically convert a number (integer or floating point) to a string format before printing it
out.

my $mass = 7.3;
my $volume = 4;
warn "mass is '$mass'\n";
warn "volume is '$volume'\n";
> mass is '7.3' ...
> volume is '4' ...

Even though $mass is stored internally as a floating point number and $volume is stored internally as
an integer, the code did not have to explicitly convert these numbers to string format before printing
them out. Perl will attempt to convert the numbers into the appropriate string representation. If you do
not want the default format, use sprintf. If you want to force stringification, simply concatenate a null
string onto the end of the value.

my $mass = 7.3; # 7.3
my $string_mass = $mass .= ''; # '7.3'

2.1.3.1.1 sprintf
Use sprintf to control exactly how perl will convert a number into string format.

sprintf (FORMAT_STRING, LIST_OF_VALUES);

For example:

my $pi = 3.1415;
my $str = sprintf("%06.2f",$pi);
warn "str is '$str'";
> str is '003.14' ...

19

Decoding the above format string:

% => format
0 => fill leading spaces with zero
6 => total length, including decimal point
.2 => put two places after the decimal point
f => floating point notation

To convert a number to a hexadecimal, octal, binary, or decimal formated string, use the following
FORMAT_STRINGS:

hexadecimal "%lx" The letter 'l' (L)
octal "%lo" indicates the input is
binary "%lb" an integer, possibly
decimal integer "%ld" a Long integer.
decimal float "%f"
scientific "%e"

2.1.3.2 Numify
Numify: Converting something other than a number to a numeric form.
Sometimes you have string information that actually represents a number. For example, a user might
enter the string "19.95" which must be converted to a float before perl can perform any arithmetic on it.

You can force numification of a value by adding integer zero to it.

my $user_input = '19.95'; # '19.95'
my $price = $user_input+0; # 19.95

If the string is NOT in base ten format, then use oct() or hex()

20

2.1.3.2.1 oct
The oct function can take a string that fits the octal, hexadecimal, or binary format and
convert it to an integer.

binary formatted strings must start with "0b"

hexadecimal formatted strings must start with "0x"

All other numbers are assumed to be octal strings.

Note: even though the string might not start with a zero (as required by octal literals), oct will assume
the string is octal. This means calling oct() on a decimal number could be a bad thing.

To handle a string that could contain octal, hexadecimal, binary, OR decimal strings, you could assume
that octal strings must start with "0". Then, if the string starts with zero, call oct on it, else assume it's
decimal. This example uses regular expressions and the conditional operator.

my $num = ($str=~m{^0}) ? oct($str) : $str + 0;

2.1.3.2.2 hex
The hex() function takes a string in hex format and converts it to integer. The hex() function is like
oct() except that hex() only handles hex base strings, and it does not require a "0x" prefix.

2.1.3.2.3 Base Conversion Overview
Given a decimal number:

my $decimal=12;

Convert from decimal to another base using sprintf:

my $hex = sprintf("%lx", $decimal);
my $oct = sprintf("%lo", $decimal);
my $bin = sprintf("%lb", $decimal);

If you want to pad the most significant bits with zeroes and you know the width, use this:

08 assumes width is 8 characters
my $p_hex = sprintf("%08lx", $decimal);
my $p_oct = sprintf("%08lo", $decimal);
my $p_bin = sprintf("%08lb", $decimal);

21

If you have a string and you want to convert it to decimal, use the conditional operator and oct().

sub convert_to_decimal {
 ($_[0]=~m{^0}) ? Oct($_[0]) : $_[0] + 0;
}

warn convert_to_decimal('42'); # dec
warn convert_to_decimal('032'); # oct
warn convert_to_decimal('0xff'); # hex
warn convert_to_decimal('0b1001011'); # bin

If you want to know how many bits it would take to store a number, convert it to binary using sprintf
(don't pad with zeros) and then call length() on it.

warn length(sprintf("%lb", 255)); # 8

2.1.4 Undefined and Uninitialized Scalars
All the examples above initialized the scalars to some known value before using them. You can declare
a variable but not initialize it, in which case, the variable is undefined. If you use a scalar that is
undefined, perl will stringify or numify it based on how you are using the variable.

An undefined scalar stringifies to an empty string: ""

An undefined scalar numifies to zero: 0

Without warnings or strict turned on, this conversion is silent. With warnings/strict on, the conversion
still takes place, but a warning is emitted.

Since perl automatically performs this conversion no matter what, there is no string or numeric
operation that will tell you if the scalar is undefined or not.

Use the defined() function to test whether a scalar is defined or not.

If the scalar is defined, the function returns a boolean "true" (1)

If the scalar is NOT defined, the function returns a boolean "false" ("").

22

If you have a scalar with a defined value in it, and you want to return it to its uninitialized state, assign
undef to it. This will be exactly as if you declared the variable with no initial value.

my $var; # undef
print "test 1 :";
if(defined($var)) {print "defined\n";}
else {print "undefined\n";}
$var = 42; # defined
print "test 2 :";
if(defined($var)) {print "defined\n";}
else {print "undefined\n";}
$var = undef; # undef as if never initialized
print "test 3 :";
if(defined($var)) {print "defined\n";}
else {print "undefined\n";}
> test 1 :undefined
> test 2 :defined
> test 3 :undefined

2.1.5 Booleans
Perl does not have a boolean "type" per se. Instead, perl interprets scalar strings and numbers as "true"
or "false" based on some rules:

1)Strings "" and "0" are FALSE,
any other string or stringification is TRUE
2) Number 0 is FALSE, any other number is TRUE
3) all references are TRUE
4) undef is FALSE

Note that these are SCALARS. Any variable that is not a SCALAR is first evaluated in scalar context,
and then treated as a string or number by the above rules. The scalar context of an ARRAY is its size.
An array with one undef value has a scalar() value of 1 and is therefore evaluated as TRUE.

A subroutine returns a scalar or a list depending on the context in which it is called. To explicitly return
FALSE in a subroutine, use this:

return wantarray() ? () : 0; # FALSE

This is sufficiently troublesome to type for such a common thing that an empty return statement within
a subroutine will do the same thing:

return; #FALSE

23

2.1.5.1 FALSE
The following scalars are interpreted as FALSE:

integer 0 # false
float 0.0 # false
string '0' # false
string '' # false
undef # false

2.1.5.2 TRUE
ALL other values are interpreted as TRUE, which means the following scalars are considered TRUE,
even though you might not have expected them to be false.

string '0.0' # true
string '00' # true
string 'false' # true
float 3.1415 # true
integer 11 # true
string 'yowser' # true

If you are doing a lot of work with numbers on a variable, you may wish to force numification on that
variable ($var+0) before it gets boolean tested, just in case you end up with a string "0.0" instead of
a float 0.0 and get some seriously hard to find bugs.

Note that the string '0.0' is TRUE, but ('0.0'+0) will get numified to 0, which is FALSE. If you are
processing a number as a string and want to evaluate it as a BOOLEAN, make sure you explicitly
NUMIFY it before testing its BOOLEANNESS.

Built in Perl functions that return a boolean will return an integer one (1) for TRUE and an empty
string ("") for FALSE.

24

2.1.5.3 Comparators

Comparison operators return booleans, specifically an integer 1 for true and a null string "" for
false. The "Comparison" operator ("<=>" and "cmp") return a -1, 0, or +1, indicating the
compared values are less than, equal to, or greater than. Distinct comparison operators exist for
comparing strings and for comparing numbers.
Function String Numeric
Function String Numeric
equal to eq ==
not equal to ne !=
less than lt <
greater than gt >
less than or equal to le <=
greater than or equal to ge >=
comparison
(lt=-1, eq=0, gt=+1)

cmp <=>

equal to
Note that if you use a string operator to compare two numbers, you will get their alphabetical string
comparison. Perl will stringify the numbers and then perform the compare. This will occur silently; perl
will emit no warning. And if you wanted the numbers compared numerically but used string
comparison, then you will get the wrong result when you compare the strings ("9" lt "100").

String "9" is greater than (gt) string "100".

Number 9 is less than (<=) number 100.

If you use a numeric operator to compare two strings, perl will attempt to numify the strings and then
compare them numerically. Comparing "John" <= "Jacob" will cause perl to convert "John" into a
number and fail miserably. However, if warnings/strict is not on, it will fail miserably and SILENTLY,
assigning the numification of "John" to integer zero.

The numeric comparison operator '<=>' is sometimes called the "spaceship operator".

25

2.1.5.4 Logical Operators
Perl has two sets of operators to perform logical AND, OR, NOT functions. The difference between the
two is that one set has a higher precedence than the other set.

The higher precedence logical operators are the '&&', '||', and '!' operators.

function operator usage return value
AND && $one && $two if ($one is false) $one else $two
OR || $one || $two if ($one is true) $one else $two
NOT ! ! $one if ($one is false) true else false

The lower precedence logical operators are the 'and', 'or', 'not', and 'xor' operators.

function operator usage return value
AND and $one and $two if ($one is false) $one else $two
OR or $one or $two if ($one is true) $one else $two
NOT not not $one if ($one is false) true else false
XOR xor $one xor $two if (($one true and $two false) or

($one false and $two true)) then
return true else false

Both sets of operators are very common in perl code, so it is useful to learn how precedence affects
their behavior. But first, some examples of how to use them.

26

2.1.5.4.1 Default Values
This subroutine has two input parameters ($left and $right) with default values (1.0 and 2.0). If the user
calls the subroutine with missing arguments, the undefined parameters will instead receive their default
values.

sub mysub {
my($left, $right)=@_;
$left ||= 1.0;
$right ||= 2.0;
deal with $left and $right here.

}

The '||=' operator is a fancy shorthand. This:
$left ||= 1.0;

is exactly the same as this:
$left = $left || 1.0;

2.1.5.4.2 Flow Control
The open() function here will attempt to open $filename for reading and attach $filehandle to it. If
open() fails in any way, it returns FALSE, and FALSE OR'ed with die () means that perl will evaluate
the die() function to finish the logical evaluation. It won't complete because execution will die, but the
end result is code that is actually quite readable.

open (my $filehandle, $filename)
or die "cant open";

2.1.5.4.3 Precedence
The reason we used '||' in the first example and 'or' in the second example is because the operators have
different precedence, and we used the one with the precedence we needed.

2.1.5.4.4 Assignment Precedence
When working with an assignment, use '||' and '&&', because they have a higher precedence than (and
are evaluated before) the assignment '='. The 'or' and 'and' operators have a precedence that is LOWER
than an assignment, meaning the assignment would occur first, followed by any remaining 'and' and 'or'
operators.

Right:

my $default = 0 || 1;
default is 1

27

Wrong:

my $default = 0 or 1;
default is 0

The second (wrong) example is equivalent to this:

(my $default = 0) or 1;

which will ALWAYS assign $default to the first value and discard the second value.

2.1.5.4.5 Flow Control Precedence
When using logical operators to perform flow control, use 'or' and 'and' operators, because they have
lower precedence than functions and other statements that form the boolean inputs to the 'or' or 'and'
operator. The '||' and '&&' have higher precedence than functions and may execute before the first
function call.

Right:

close $fh or die "Error:could not close";

Wrong:
close $fh || die "Error: could not close";

The second (wrong) example is equivalent to this:

close ($fh || die "Error");

which will ALWAYS evaluate $fh as true, NEVER die, and close $fh. If close() fails, the return value
is discarded, and the program continues on its merry way.

It is always possible to override precedence with parentheses, but it is probably better to get in the habit
of using the right operator for the right job.

2.1.5.4.6 Conditional Operator
The conditional operator mimics the conditional testing of an if-else block. The conditional operator
uses three operands, and is also called a trinary operator.

As it happens, the conditional operator is perl's ONLY trinary operator, so people sometimes call it the
trinary or ternary operator when they mean conditional operator. As long as perl doesn't add another
trinary operator, its not a problem. It is even more rarely called the ?: operator.

The conditional operator has this form:

my $RESULT = $BOOLEAN1 ? $VALUE1 : $VALUE2;

28

This can be rewritten as an if-else block like this:

my $RESULT;
if($BOOLEAN1) {

$RESULT = $VALUE1
} else {

$RESULT = $VALUE2
}

The conditional operator allows you to declare the variable and perform the assignment all in one short
line of code.

Note that $BOOLEAN1, $VALUE1 and $VALUE2 can be replaced by any normal perl expression,
rather than being limited to a simple scalar value. One interesting expression that you could replace
$VALUE2 with is another conditional operator, effectively allowing you to create a chain of if-elsif-
elsif-else statements. For example:

my $RESULT =
 $BOOLEAN1 ? $VALUE1
: $BOOLEAN2 ? $VALUE2
: $BOOLEAN3 ? $VALUE3
: $BOOLEAN4 ? $VALUE4
: $VALUE5;

The above example is equivalent to this mouthful:

my $RESULT;
 if($BOOLEAN1) { $RESULT = $VALUE1 }
elsif($BOOLEAN2) { $RESULT = $VALUE2 }
elsif($BOOLEAN3) { $RESULT = $VALUE3 }
elsif($BOOLEAN4) { $RESULT = $VALUE4 }
eles { $RESULT = $VALUE5 }

2.1.6 References
A reference points to the variable to which it refers. It is kind of like a pointer in C, which says "the
data I want is at this address". Unlike C, you cannot manually alter the address of a perl reference. You
can only create a reference to a variable that is visible from your current scope.

Create a reference by placing a "\" in front of the variable:

my $name = 'John';
my $age = 42;
my $name_ref = \$name;
my $age_ref = \$age;

29

Perl will stringify a reference so that you can print it and see what it is.

warn "age_ref is '$age_ref'";
> age_ref is 'SCALAR(0x812e6ec)' ...

This tells you that $age_ref is a reference to a SCALAR (which we know is called $age). It also tells
you the address of the variable to which we are referring is 0x812e6ec.

You cannot referencify a string. I.E. you cannot give perl a string, such as "SCALAR (0x83938949)"
and have perl give you a reference to whatever is at that address. Perl is pretty loosy goosey about what
it will let you do, but not even perl is so crazy as to give people complete access to the system memory.

30

You can dereference a reference by putting an extra sigil (of the appropriate type) in front of the
reference variable.

my $name = 'John';
my $ref_to_name = \$name;
my $deref_name = $$ref_to_name;
warn $deref_name;
> John ...

References are interesting enough that they get their own section. But I introduce them here so that I
can introduce a really cool module that uses references: Data::Dumper. Data::Dumper will take a
reference to ANYTHING and print out the thing to which it refers in a human readable form.

This does not seem very impressive with a reference to a scalar:

my $name = 'John';
my $ref_to_name = \$name;
warn Dumper \$ref_to_name;
> $VAR1 = \'John';

But this will be absolutely essential when working with Arrays and Hashes.

2.1.7 Filehandles
Scalars can store a filehandle. File IO gets its own section, but I introduce it here to give a complete
picture of what scalars can hold.

Given a scalar that is undefined (uninitialized), calling open() on that scalar and a string filename will
tell perl to open the file specified by the string, and store the handle to that file in the scalar.

open(my $fh, '>out.txt');
print $fh "hello world\n";
print $fh "this is simple file writing\n";
close($fh);

The scalar $fh in the example above holds the filehandle to "out.txt". Printing to the filehandle
actually outputs the string to the file.

There is some magic going on there that I have not explained, but that is a quick intro to scalar
filehandles.

31

data::Dumper

2.1.8 Scalar Review
Scalars can store STRINGS, NUMBERS (floats and ints), REFERENCES, and FILEHANDLES.

Stringify: to convert something to a string format

Numify: to convert something to a numeric format

The following scalars are interpreted as boolean FALSE:

integer 0, float 0.0, string "0", string "", undef

All other scalar values are interpreted as boolean TRUE.

2.2 Arrays
Arrays are preceded with an "at" sigil. The "@" is a stylized "a".

An array stores a bunch of scalars that are accessed via an integer index.

Perl arrays are ONE-DIMENSIONAL ONLY. (Do Not Panic.)

The first element of an array always starts at ZERO (0).

When you refer to an entire array, use the "@" sigil.

my @numbers = qw (zero one two three);

When you index into the array, the "@" character changes to a "$" and the numeric index is placed in
square brackets.

my @numbers = qw (zero one two three);
my $string = $numbers[2];
warn $string;
> two ...

32

The length of an array is not pre-declared. Perl autovivifies whatever space it needs.

my @months;
$months[1]='January';
$months[5]='May';
$months[0] and $months[2..4] are autovivified
and initialized to undef
print Dumper \@months;
> $VAR1 = [
> undef, # index 0 is undefined
> 'January', # $months[1]
> ${\$VAR1->[0]}, # this is same as undef
> ${\$VAR1->[0]}, # undef
> ${\$VAR1->[0]}, # undef
> 'May' # $months[5]
>];

If you want to see if you can blow your memory, try running this piece of code:

my @mem_hog;
$mem_hog[10000000000000000000000]=1;

the array is filled with undefs
except the last entry, which is initialized to 1

Arrays can store ANYTHING that can be stored in a scalar

my @junk_drawer = ('pliers', 1,1,1, '*', '//',
3.14, 9*11, 'yaba', 'daba');

Negative indexes start from the end of the array and work backwards.

my @colors = qw (red green blue);
my $last=$colors[-1];
warn "last is '$last'";

> last is 'blue' ...

2.2.1 scalar (@array)
To get how many elements are in the array, use "scalar"

my @phonetic = qw (alpha bravo charlie delta);
my $quantity = scalar(@phonetic);
warn $quantity;

> 4 ...

33

When you assign an entire array into a scalar variable, you will get the same thing, but calling scalar()
is much more clear.

my @phonetic = qw (alpha bravo charlie);
my $quant = @phonetic;
warn $quant;

> 3 ...

This is explained later in the "list context" section.

2.2.2 push(@array, LIST)
Use push() to add elements onto the end of the array (the highest index). This will increase the length
of the array by the number of items added.

my @groceries = qw (milk bread);
push(@groceries, qw (eggs bacon cheese));
print Dumper \@groceries;

> $VAR1 = [
> 'milk',
> 'bread',
> 'eggs',
> 'bacon',
> 'cheese'
>];

2.2.3 pop(@array)
Use pop() to get the last element off of the end of the array (the highest index). This will shorten the
array by one. The return value of pop() is the value popped off of the array.

my @names = qw (alice bob charlie);
my $last_name = pop(@names);
warn "popped = $last_name";
print Dumper \@names;

> popped = charlie ...
> $VAR1 = [
> 'alice',
> 'bob'
>];

34

2.2.4 shift(@array)
Use shift() to remove one element from the beginning/bottom of an array (i.e. at index zero). All
elements will be shifted DOWN one index. The array will be shorted by one.

The return value is the value removed from the array.

my @curses = qw (fee fie foe fum);
my $start = shift(@curses);
warn $start;
warn Dumper \@curses;

> fee
> $VAR1 = [
> 'fie',
> 'foe',
> 'fum'
>];

2.2.5 unshift(@array, LIST)
use unshift() to add elements to the BEGINNING/BOTTOM of an array (i.e. at index ZERO). All the
other elements in the array will be shifted up to make room. This will length the array by the number of
elements in LIST.

my @trees = qw (pine maple oak);
unshift(@trees, 'birch');
warn Dumper \@trees;

> $VAR1 = [
> 'birch', # index 0
> 'pine', # old index 0, now 1
> 'maple', # 2
> 'oak' # 3
>];

35

2.2.6 foreach (@array)
Use foreach to iterate through all the elements of a list. Its formal definition is:

LABEL foreach VAR (LIST) BLOCK

This is a control flow structure that is covered in more detail in the "control flow" section. The foreach
structure supports last, next, and redo statements.

Use a simple foreach loop to do something to each element in an array:

my @fruits = qw (apples oranges lemons pears);
foreach my $fruit (@fruits) {

print "fruit is '$fruit'\n";
}

> fruit is 'apples'
> fruit is 'oranges'
> fruit is 'lemons'
> fruit is 'pears'

DO NOT ADD OR DELETE ELEMENTS TO AN ARRAY BEING PROCESSED IN A
FOREACH LOOP.

my @numbers = qw (zero one two three);
foreach my $num (@numbers) {

shift(@numbers) if($num eq 'one');
print "num is '$num'\n";

}

> num is 'zero'
> num is 'one'
> num is 'three'
note: I deleted 'zero', but I failed to
print out 'two', which is still part of array.
BAD!!

36

VAR acts as an alias to the element of the array itself. Changes to VAR propagate to changing the
array.

my @integers = (23, 142, 9384, 83948);
foreach my $num (@integers) {

$num+=100;
}
print Dumper \@integers;

> $VAR1 = [
> 123,
> 242,
> 9484,
> 84048
>];

2.2.7 sort(@array)
Use sort() to sort an array alphabetically. The return value is the sorted version of the array. The array
passed in is left untouched.

my @fruit = qw (pears apples bananas oranges);
my @sorted_array = sort(@fruit);
print Dumper \@sorted_array ;

>$VAR1 = [
> 'apples',
> 'bananas',
> 'oranges',
> 'pears'
>];

Sorting a list of numbers will sort them alphabetically as well, which probably is not what you want.

my @scores = (1000, 13, 27, 200, 76, 150);
my @sorted_array = sort(@scores);
print Dumper \@sorted_array ;

> $VAR1 = [
> 1000, # 1's
> 13, # 1's
> 150, # 1's
> 200,
> 27,
> 76
>];

37

The sort() function can also take a code block (any piece of code between curly braces) which defines
how to perform the sort if given any two elements from the array. The code block uses two global
variables, $a and $b, and defines how to compare the two entries.

This is how you would sort an array numerically.

my @scores = (1000, 13, 27, 200, 76, 150);
my @sorted_array = sort {$a<=>$b} (@scores);
print Dumper \@sorted_array ;

> $VAR1 = [
> 13,
> 27,
> 76,
> 150,
> 200,
> 1000
>];

2.2.8 reverse(@array)
The reverse() function takes a list and returns an array in reverse order. The last element becomes the
first element. The first element becomes the last element.

my @numbers = reverse (1000,13,27,200,76,150);
print Dumper \@numbers ;
> $VAR1 = [
> 150,
> 76,
> 200,
> 27,
> 13,
> 1000
>];

38

2.2.9 splice(@array)
Use splice() to add or remove elements into or out of any index range of an array.

splice (ARRAY , OFFSET , LENGTH , LIST);

The elements in ARRAY starting at OFFSET and going for LENGTH indexes will be removed from
ARRAY. Any elements from LIST will be inserted at OFFSET into ARRAY.

my @words = qw (hello there);
splice(@words, 1, 0, 'out');
warn join(" ", @words);

> hello out there ...

2.2.10 Undefined and Uninitialized Arrays
An array is initialized as having no entries. Therefore you can test to see if an array is initialized by
calling scalar() on it. This is equivalent to calling defined() on a scalar variable. If scalar() returns false
(i.e. integer 0), then the array is uninitialized.

If you want to uninitialize an array that contains data, then you do NOT want to assign it undef like you
would a scalar. This would fill the array with one element at index zero with a value of undefined.

my @array = undef; # WRONG

To clear an array to its original uninitialized state, assign an empty list to it. This will clear out any
entries, and leave you with a completely empty array.

my @array = (); # RIGHT

2.3 Hashes
Hashes are preceded with a percent sign sigil.

The "%" is a stylized "key/value" pair.

A hash stores a bunch of scalars that are accessed via a string index called a "key"

Perl hashes are ONE-DIMENSIONAL ONLY. (Do Not Panic.)

There is no order to the elements in a hash. (Well, there is, but you should not use a hash with an
assumption about what order the data will come out.)

You can assign any even number of scalars to a hash. Perl will extract them in pairs. The first item will
be treated as the key, and the second item will be treated as the value.

39

When you refer to an entire hash, use the "%" sigil.

my %info = qw (name John age 42);

When you look up a key in the hash, the "%" character changes to a "$" and the key is placed in curly
braces.

my %info = qw (name John age 42);
my $data = $info{name};
warn $data;

> John ...

The keys of a hash are not pre-declared. If the key does not exist during an ASSIGNMENT, the key is
created and given the assigned value.

my %inventory;
$inventory{apples}=42;
$inventory{pears}=17;
$inventory{bananas}=5;
print Dumper \%inventory;

>$VAR1 = {
> 'bananas' => 5,
> 'apples' => 42,
> 'pears' => 17
> };

If the key does not exist during a FETCH, the key is NOT created, and undef is returned.

my %inventory;
$inventory{apples}=42;
my $peaches = $inventory{peaches};
warn "peaches is '$peaches'";
print Dumper \%inventory;

> Use of uninitialized value in concatenation
> peaches is '' at ./test.pl line 13.
> $VAR1 = {
> 'apples' => 42
> };

40

2.3.1 exists ($hash{$key})
Use exists() to see if a key exists in a hash. You cannot simply test the value of a key, since a key might
exist but store a value of FALSE

my %pets = (cats=>2, dogs=>1);
unless(exists($pets{fish})) {

print "No fish here\n";
}

Warning: during multi-key lookup, all the lower level keys are autovivified, and only the last key has
exists() tested on it. This only happens if you have a hash of hash references. References are covered
later, but this is a "feature" specific to exists() that can lead to very subtle bugs. Note in the following
example, we explicitly create the key "Florida", but we only test for the existence of {Maine}-
>{StateBird}, which has the side effect of creating the key {Maine} in the hash.

my %stateinfo;
$stateinfo{Florida}->{Abbreviation}='FL';
if (exists($stateinfo{Maine}->{StateBird})) {

warn "it exists";
}
print Dumper \%stateinfo;

> $VAR1 = {
> 'Florida' => {
> 'Abbreviation' => 'FL'
> },
> 'Maine' => {}
> };

You must test each level of key individually, and build your way up to the final key lookup if you do
not want to autovivify the lower level keys.

my %stateinfo;
$stateinfo{Florida}->{Abbreviation}='FL';
if (exists($stateinfo{Maine})) {

if (exists($stateinfo{Maine}->{StateBird}))
{ warn "it exists"; }

}
print Dumper \%stateinfo;

> $VAR1 = {
> 'Florida' => {
> 'Abbreviation' => 'FL'
> }
> };

41

2.3.2 delete ($hash{key})
Use delete to delete a key/value pair from a hash. Once a key is created in a hash, assigning undef to it
will keep the key in the hash and will only assign the value to undef.

The only way to remove a key/value pair from a hash is with delete().

my %pets = (
fish=>3,
cats=>2,
dogs=>1,

);
$pets{cats}=undef;
delete($pets{fish});
print Dumper \%pets;

> $VAR1 = {
> 'cats' => undef,
> 'dogs' => 1
> };

2.3.3 keys(%hash)
Use keys() to return a list of all the keys in a hash. The order of the keys will be based on the internal
hashing algorithm used, and should not be something your program depends upon. Note in the example
below that the order of assignment is different from the order printed out.

my %pets = (
fish=>3,
cats=>2,
dogs=>1,

);
foreach my $pet (keys(%pets)) {

print "pet is '$pet'\n";
}

> pet is 'cats'
> pet is 'dogs'
> pet is 'fish'

If the hash is very large, then you may wish to use the each() function described below.

42

2.3.4 values(%hash)
Use values() to return a list of all the values in a hash. The order of the values will match the order of
the keys return in keys().

my %pets = (
fish=>3,
cats=>2,
dogs=>1,

);
my @pet_keys = keys(%pets);
my @pet_vals = values(%pets);
print Dumper \@pet_keys;
print Dumper \@pet_vals;

> $VAR1 = [
> 'cats',
> 'dogs',
> 'fish'
>];
> $VAR1 = [
> 2,
> 1,
> 3
>];

If the hash is very large, then you may wish to use the each() function described below.

2.3.5 each(%hash)
Use each() to iterate through each key/value pair in a hash, one at a time.

my %pets = (
fish=>3,
cats=>2,
dogs=>1,

);
while(my($pet,$qty)=each(%pets)) {

print "pet='$pet', qty='$qty'\n";
}

> pet='cats', qty='2'
> pet='dogs', qty='1'
> pet='fish', qty='3'

43

Every call to each() returns the next key/value pair in the hash. After the last key/value pair is returned,
the next call to each() will return an empty list, which is boolean false. This is how the while loop is
able to loop through each key/value and then exit when done.

Every hash has one "each iterator" attached to it. This iterator is used by perl to remember where it is in
the hash for the next call to each().

Calling keys() on the hash will reset the iterator. The list returned by keys() can be discarded.

keys(%hash);

Do not add keys while iterating a hash with each().

You can delete keys while iterating a hash with each().

The each() function does not have to be used inside a while loop. This example uses a subroutine to call
each() once and print out the result. The subroutine is called multiple times without using a while()
loop.

my %pets = (
fish=>3,
cats=>2,
dogs=>1,

);

sub one_time {
my($pet,$qty)=each(%pets);
if key is not defined,
then each() must have hit end of hash
if(defined($pet)) {

print "pet='$pet', qty='$qty'\n";
} else {

print "end of hash\n";
}

}

one_time; # cats
one_time; # dogs
keys(%pets); # reset the hash iterator
one_time; # cats
one_time; # dogs
one_time; # fish
one_time; # end of hash
one_time; # cats
one_time; # dogs

44

> pet='cats', qty='2'
> pet='dogs', qty='1'
> pet='cats', qty='2'
> pet='dogs', qty='1'
> pet='fish', qty='3'
> end of hash
> pet='cats', qty='2'
> pet='dogs', qty='1'

There is only one iterator variable connected with each hash, which means calling each() on a hash in a
loop that then calls each() on the same hash another loop will cause problems. The example below goes
through the %pets hash and attempts to compare the quantity of different pets and print out their
comparison.

my %pets = (
fish=>3,
cats=>2,
dogs=>1,

);
while(my($orig_pet,$orig_qty)=each(%pets)) {

while(my($cmp_pet,$cmp_qty)=each(%pets)) {
if($orig_qty>$cmp_qty) {

print "there are more $orig_pet "
."than $cmp_pet\n";

} else {
print "there are less $orig_pet "

."than $cmp_pet\n";
}

}
}

> there are more cats than dogs
> there are less cats than fish
> there are more cats than dogs
> there are less cats than fish
> there are more cats than dogs
> there are less cats than fish
> there are more cats than dogs
> there are less cats than fish
> ...

The outside loop calls each() and gets "cats". The inside loop calls each() and gets "dogs". The inside
loop continues, calls each() again, and gets "fish". The inside loop calls each() one more time and gets
an empty list. The inside loop exits. The outside loop calls each() which continues where the inside
loop left off, namely at the end of the list, and returns "cats". The code then enters the inside loop, and
the process repeats itself indefinitely.

45

One solution for this each() limitation is shown below. The inner loop continues to call each() until it
gets the key that matches the outer loop key. The inner loop must skip the end of the hash (an
undefined key) and continue the inner loop. This also fixes a problem in the above example in that we
probably do not want to compare a key to itself.

my %pets = (
fish=>3,
cats=>2,
dogs=>1,

);
while(my($orig_pet,$orig_qty)=each(%pets)) {

while(1) {
my($cmp_pet,$cmp_qty)=each(%pets);
next unless(defined($cmp_pet));
last if($cmp_pet eq $orig_pet);
if($orig_qty>$cmp_qty) {

print "there are more $orig_pet "
."than $cmp_pet\n";

} else {
print "there are less $orig_pet "

."than $cmp_pet\n";
}

}
}

> there are more cats than dogs
> there are less cats than fish
> there are less dogs than fish
> there are less dogs than cats
> there are more fish than cats
> there are more fish than dogs

If you do not know the outer loop key, either because its in someone else's code and they do not pass it
to you, or some similar problem, then the only other solution is to call keys on the hash for all inner
loops, store the keys in an array, and loop through the array of keys using foreach. The inner loop will
then not rely on the internal hash iterator value.

46

2.4 List Context
List context is a concept built into the grammar of perl. You cannot declare a "list context" in perl the
way you might declare an @array or %hash. List context affects how perl executes your source code.
Here is an example.

my @cart1=qw(milk bread butter);
my @cart2=qw(eggs bacon juice);
my @checkout_counter = (@cart1, @cart2);
print Dumper \@checkout_counter;

> $VAR1 = [
> 'milk',
> 'bread',
> 'butter',
> 'eggs',
> 'bacon',
> 'juice'
>];

Basically, two people with grocery carts, @cart1 and @cart2, pulled up to the @checkout_counter and
unloaded their carts without putting one of those separator bars in between them. The person behind the
@checkout_counter has no idea whose groceries are whose.

Everything in list context gets reduced to an ordered series of scalars. The original container that held
the scalars is forgotten.

In the above example the order of scalars is retained: milk, bread, butter is the order of scalars in
@cart1 and the order of the scalars at the beginning of @checkout_counter. However, looking at just
@checkout_counter, there is no way to know where the contents of @cart1 end and the contents of
@cart2 begin. In fact, @cart1 might have been empty, and all the contents of @checkout_counter
could belong to @cart2, but there is no way to know.

Sometimes, list context can be extremely handy. We have used list context repeatedly to initialize
arrays and hashes and it worked as we would intuitively expect:

my %pets = (fish=>3, cats=>2, dogs=>1);
my @cart1 = qw(milk bread eggs);

The initial values for the hash get converted into an ordered list of scalars

('fish', 3, 'cats', 2, 'dogs', 1)

These scalars are then used in list context to initialize the hash, using the first scalar as a key and the
following scalar as its value, and so on throughout the list.

47

List context applies anytime data is passed around in perl. Scalars, arrays, and hashes are all affected by
list context. In the example below, @house is intended to contain a list of all the items in the house.
However, because the %pets hash was reduced to scalars in list context, the values 3,2,1 are
disassociated from their keys. The @house variable is not very useful.

my %pets = (fish=>3, cats=>2, dogs=>1);
my @refrigerator=qw(milk bread eggs);
my @house=('couch',%pets,@refrigerator,'chair');
print Dumper \@house;
>$VAR1 = [
> 'couch',
> 'cats',
> 2,
> 'dogs',
> 1,
> 'fish',
> 3,
> 'milk',
> 'bread',
> 'eggs',
> 'chair'
>];

There are times when list context on a hash does make sense.

my %encrypt=(tank=>'turtle',bomber=>'eagle');
my %decrypt=reverse(%encrypt) ;
print Dumper \%decrypt;
> $VAR1 = {
> 'eagle' => 'bomber',
> 'turtle' => 'tank'
> };

The %encrypt hash contains a hash look up to encrypt plaintext into cyphertext. Anytime you want to
use the word "bomber", you actually send the word "eagle". The decryption is the opposite. Anytime
you receive the word "eagle" you need to translate that to the word "bomber".

Using the %encrypt hash to perform decryption would require a loop that called each() on the %encrypt
hash, looping until it found the value that matched the word received over the radio. This could take too
long.

Instead, because there is no overlap between keys and values, (two different words don't encrypt to the
same word), we can simply treat the %encrypt hash as a list, call the array reverse() function on it,
which flips the list around from end to end, and then store that reversed list into a %decrypt hash.

48

2.5 References
References are a thing that refer (point) to something else.

The "something else" is called the "referent", the thing being pointed to.

Taking a reference and using it to access the referent is called "dereferencing".

A good real-world example is a driver's license. Your license "points" to where you live because it lists
your home address. Your license is a "reference". The "referent" is your home. And if you have
forgotten where you live, you can take your license and "dereferencing" it to get yourself home.

It is possible that you have roommates, which would mean multiple references exist to point to the
same home. But there can only be one home per address.

In perl, references are stored in scalars. You can create a reference by creating some data (scalar, array,
hash) and putting a "\" in front of it.

my %home= (
 fish=>3,cats=>2,dogs=>1,
 milk=>1,bread=>2,eggs=>12,
);
my $license_for_alice = \%home;
my $license_for_bob = \%home;

Alice and Bob are roommates and their licenses are references to the same %home. This means that
Alice could bring in a bunch of new pets and Bob could eat the bread out of the refrigerator even
though Alice might have been the one to put it there. To do this, Alice and Bob need to dereference
their licenses and get into the original %home hash.

$ {$license_for_alice} {dogs} += 5;
delete($ {$license_for_bob} {milk});
print Dumper \%home;
> $VAR1 = {
> 'eggs' => 12,
> 'cats' => 2,
> 'bread' => 2,
> 'dogs' => 6,
> 'fish' => 3
> };

49

2.5.1 Named Referents
A referent is any original data structure: a scalar, array, or hash. Below, we declare some named
referents: age, colors, and pets.

my $age = 42;
my @colors = qw(red green blue);
my %pets=(fish=>3,cats=>2,dogs=>1);

2.5.2 References to Named Referents
A reference points to the referent. To take a reference to a named referent, put a "\" in front of the
named referent.

my $ref_to_age = \$age;
my $r_2_colors = \@colors;
my $r_pets = \%pets;

2.5.3 Dereferencing
To dereference, place the reference in curly braces and prefix it with the sigil of the appropriate type.
This will give access to the entire original referent.

${$ref_to_age}++; # happy birthday
pop(@{$r_2_colors});
my %copy_of_pets = %{$r_pets};
print "age is '$age'\n";
> age is '43'

If there is no ambiguity in dereferencing, the curly braces are not needed.

$$ref_to_age ++; # another birthday
print "age is '$age'\n";
> age is '44'

50

It is also possible to dereference into an array or hash with a specific index or key.

my @colors = qw(red green blue);
my %pets=(fish=>3,cats=>2,dogs=>1);
my $r_colors = \@colors; my $r_pets = \%pets;
${$r_pets} {dogs} += 5;
${$r_colors}[1] = 'yellow';
print Dumper \@colors; print Dumper \%pets;
> $VAR1 = [
'red',
'yellow', # green turned to yellow
'blue'
];
$VAR1 = {
'cats' => 2,
'dogs' => 6, # 5 new dogs
'fish' => 3
};

Because array and hash referents are so common, perl has a shorthand notation for indexing into an
array or looking up a key in a hash using a reference. Take the reference, follow it by "->", and then
follow that by either "[index]" or "{key}". This:

${$r_pets} {dogs} += 5;
${$r_colors}[1] = 'yellow';

is exactly the same as this:

$r_pets->{dogs} += 5;
$r_colors->[1] = 'yellow';

2.5.4 Anonymous Referents
Here are some referents named age, colors, and pets. Each named referent has a reference to it as well.

my $age = 42;
my @colors = qw(red green blue);
my %pets=(fish=>3,cats=>2,dogs=>1);
my $r_age = \$age;
my $r_colors = \@colors;
my $r_pets = \%pets;

It is also possible in perl to create an ANONYMOUS REFERENT. An anonymous referent has no
name for the underlying data structure and can only be accessed through the reference.

To create an anonymous array referent, put the contents of the array in square brackets.

51

The square brackets will create the underlying array with no name, and return a reference to that
unnamed array.

my $colors_ref = ['red', 'green', 'blue'];
print Dumper $colors_ref;
> $VAR1 = [
> 'red',
> 'green',
> 'blue'
>];

To create an anonymous hash referent, put the contents of the hash in curly braces. The curly braces
will create the underlying hash with no name, and return a reference to that unnamed hash.

my $pets_ref = { fish=>3,cats=>2,dogs=>1 };
print Dumper $pets_ref;
> $VAR1 = {
> 'cats' => 2,
> 'dogs' => 1,
> 'fish' => 3
> };

Note that $colors_ref is a reference to an array, but that array has no name to directly access its data.
You must use $colors_ref to access the data in the array. Likewise, $pets_ref is a reference to a hash,
but that hash has no name to directly access its data. You must use $pets_ref to access the data in the
hash.

52

2.5.5 Complex Data Structures
Arrays and hashes can only store scalar values. But because scalars can hold references, complex data
structures are now possible. Using references is one way to avoid the problems associated with list
context. Here is another look at the house example, but now using references.

my %pets = (fish=>3, cats=>2, dogs=>1);
my @refrigerator=qw(milk bread eggs);
my $house={
 pets=>\%pets,
 refrigerator=>\@refrigerator
};
print Dumper $house;
> $VAR1 = {
> 'pets' => {
> 'cats' => 2,
> 'dogs' => 1,
> 'fish' => 3
> },
> 'refrigerator' => [
> 'milk',
> 'bread',
> 'eggs'
>]
> };

The $house variable is a reference to an anonymous hash, which contains two keys, "pets" and
"refrigerator". These keys are associated with values that are references as well, one a hash reference
and the other an array reference.

Dereferencing a complex data structure can be done with the arrow notation or by enclosing the
reference in curly braces and prefixing it with the appropriate sigil.

Alice added more canines
$house->{pets}->{dogs}+=5;
Bob drank all the milk
shift(@{$house->{refrigerator}});

53

2.5.5.1 Autovivification
Perl autovivifies any structure needed when assigning or fetching from a reference. The autovivified
referents are anonymous. Perl will assume you know what you are doing with your structures. In the
example below, we start out with an undefined scalar called $scal. We then fetch from this undefined
scalar, as if it were a reference to an array of a hash of an array of a hash of an array. Perl autovivifies
everything under the assumption that that is what you wanted to do.

my $scal;
my $val =
$scal->[2]->{somekey}->[1]->{otherkey}->[1];
print Dumper $scal;
> $VAR1 = [
> undef,
> ${\$VAR1->[0]},
> {
> 'somekey' => [
> ${\$VAR1->[0]},
> {
> 'otherkey' => []
> }
>]
> }
>];

If this is NOT what you want to do, check for the existence of each hash key and check that the array
contains at least enough array entries to handle the given index.

54

2.5.5.2 Multidimensional Arrays
Perl implements multidimensional arrays using one-dimensional arrays and references.

my $mda;
for(my $i=0;$i<2;$i++){

for(my $j=0;$j<2;$j++) {
for(my $k=0;$k<2;$k++){

 $mda->[$i]->[$j]->[$k] =
 "row=$i, col=$j, depth=$k";
 }
 }
}
print Dumper $mda;
> $VAR1 = [
> [
> [
> 'row=0, col=0, depth=0',
> 'row=0, col=0, depth=1'
>],
> [
> 'row=0, col=1, depth=0',
> 'row=0, col=1, depth=1'
>]
>],
> [
> [
> 'row=1, col=0, depth=0',
> 'row=1, col=0, depth=1'
>],
> [
> 'row=1, col=1, depth=0',
> 'row=1, col=1, depth=1'
>]
>]
>];

55

2.5.5.3 Deep Cloning, Deep Copy
If you need to create an entirely separate but identical clone of a complex data structure, use the
Storable.pm perl module. Storable comes standard with perl 5.8. If you don't have 5.8 installed,
consider an upgrade. Otherwise, read the section about CPAN later in this document, download
Storable from CPAN, and install.

Then use Storable in your perl code, indicating you want to import the 'nstore', 'dclone', and 'retrieve'
subroutines. The 'use' statement is explained later in this document as well, for now, it isn't that
important.

The 'dclone' subroutine takes a reference to any kind of data structure and returns a reference to a deep
cloned version of that data structure.

use Storable qw(nstore dclone retrieve);
my $scal;
$scal->[2]->{somekey}->[1]->{otherkey}->[1];
$twin is an identical clone of $scal
my $twin = dclone $scal;

2.5.5.4 Data Persistence
The Storable.pm module also contains two subroutines for storing the contents of any perl data
structure to a file and retrieving it later.

use Storable qw(nstore dclone retrieve);
my $scal;
$scal->[2]->{somekey}->[1]->{otherkey}->[1];
nstore ($scal, 'filename');
exit, reboot computer, and restart script
my $revived = retrieve('filename');

2.5.6 Stringification of References
Perl will stringify a reference if you try to do anything string-like with it, such as print it.

my $referent = 42;
my $reference = \$referent;
warn "reference is '$reference'";
> reference is 'SCALAR(0x812e6ec)' ...

But perl will not allow you to create a string and attempt to turn it into a reference.

my $reference = 'SCALAR(0x812e6ec)';
my $value = $$reference;
> Can't use string ("SCALAR(0x812e6ec)") as
> a SCALAR ref while "strict refs" in use

56

Turning strict off only gives you undef.

no strict;
my $reference = 'SCALAR(0x812e6ec)';
my $value = $$reference;
warn "value not defined" unless(defined($value));
warn "value is '$value'\n";
> value not defined
> Use of uninitialized value in concatenation

Because a reference is always a string that looks something like "SCALAR(0x812e6ec)", it will
evaluate true when treated as a boolean, even if the value to which it points is false.

2.5.7 The ref() function
The ref() function takes a scalar and returns a string indicating what kind of referent the scalar is
referencing. If the scalar is not a reference, ref() returns false (an empty string).

my $temp = \42;
my $string = ref($temp);
warn "string is '$string'";
> string is 'SCALAR'

Here we call ref() on several types of variable:

sub what_is_it {
 my ($scalar)=@_;
 my $string = ref($scalar);
 print "string is '$string'\n";
}
what_is_it(\'hello');
what_is_it([1,2,3]);
what_is_it({cats=>2});
what_is_it(42);
> string is 'SCALAR'
> string is 'ARRAY'
> string is 'HASH'
> string is ''

Note that this is like stringification of a reference except without the address being part of the string.
Instead of SCALAR(0x812e6ec), its just SCALAR. Also note that if you stringify a non-reference, you
get the scalar value. But if you call ref() on a nonreference, you get an empty string, which is always
false.

57

3 Control Flow
Standard statements get executed in sequential order in perl.

my $name = 'John Smith';
my $greeting = "Hello, $name\n";
print $greeting;

Control flow statements allow you to alter the order of execution while the program is running.

if($price == 0) {
 print "Free Beer!\n";
}

58

Perl supports the following control flow structures:

##
LABEL is an optional name that identifies the
control flow structure.
It is a bareword identifier followed by a colon.
example==> MY_NAME:
##
SINGLE_STATEMENT ==> a single perl statement
NOT including the semicolon.
print "hello\n"
##
BLOCK ==> zero or more statements contained
in curly braces { print "hi"; }
LABEL BLOCK
LABEL BLOCK continue BLOCK
BOOL ==> boolean (see boolean section above)
SINGLE_STATEMENT if (BOOL);
if (BOOL) BLOCK
if (BOOL) BLOCK else BLOCK
if (BOOL) BLOCK elsif (BOOL) BLOCK elsif ()...
if (BOOL) BLOCK elsif (BOOL) BLOCK ... else BLOCK
unless (BOOL) BLOCK
unless (BOOL) BLOCK else BLOCK
unless (BOOL) BLOCK elsif (BOOL) BLOCK elsif ()...
unless (BOOL) BLOCK elsif (BOOL) BLOCK ... else
BLOCK
LABEL while (BOOL) BLOCK
LABEL while (BOOL) BLOCK continue BLOCK
LABEL until (BOOL) BLOCK
LABEL until (BOOL) BLOCK continue BLOCK
INIT, TEST, CONT are all expressions
INIT is an initialization expression
INIT is evaluated once prior to loop entry
TEST is BOOLEAN expression that controls loop exit
TEST is evaluated each time after
BLOCK is executed
CONT is a continuation expression
CONT is evaluated each time TEST is evaluated TRUE
LABEL for (INIT; TEST; CONT) BLOCK
LIST is a list of scalars, see arrays and
list context sections later in text
LABEL foreach (LIST) BLOCK
LABEL foreach VAR (LIST) BLOCK
LABEL foreach VAR (LIST) BLOCK continue BLOCK

59

3.1 Labels
Labels are always optional. A label is an identifier followed by a colon.

A label is used to give its associated control flow structure a name.

Inside a BLOCK of a control flow structure, you can call

next;
last;
redo;

If the structure has a LABEL, you can call

next LABEL;
last LABEL;
redo LABEL;

If no label is given to next, last, or redo, then the command will operate on the inner-most control
structure. If a label is given, then the command will operate on the control structure given.

3.2 last LABEL;
The last command goes to the end of the entire control structure. It does not execute any continue block
if one exists.

3.3 next LABEL;
The next command skips the remaining BLOCK. if there is a continue block, execution resumes there.
After the continue block finishes, or if no continue block exists, execution starts the next iteration of
the control construct if it is a loop construct.

3.4 redo LABEL;
The redo command skips the remaining BLOCK. It does not execute any continue block (even if it
exists). Execution then resumes at the start of the control structure without evaluating the conditional
again.

60

4 Packages and Namespaces and Lexical Scoping

4.1 Package Declaration
Perl has a package declaration statement that looks like this:

package NAMESPACE;

This package declaration indicates that the rest of the enclosing block, subroutine, eval, or file belongs
to the namespace given by NAMESPACE.

The standard warnings, strictness, and Data::Dumper are attached to the namespace in which they were
turned on with "use warnings;" etc. Anytime you declare a new package namespace, you will want to
"use" these again.

package SomeOtherPackage;
use warnings; use strict; use Data::Dumper;

All perl scripts start with an implied declaration of:

package main;

You can access package variables with the appropriate sigil, followed by the package name, followed
by a double colon, followed by the variable name. This is called a package QUALIFIED variable
meaning the package name is explicitly stated.

$package_this::age;
@other_package::refrigerator;
%package_that::pets;

If you use an UNQUALIFIED variable in your code, perl assumes it is in the the most recently
declared package namespace that was declared.

When you have strict-ness turned on, there are two ways to create and use package variables:

1) Use the fully package qualified name everywhere in your code:

can use variable without declaring it with 'my'
$some_package::answer=42;
warn "The value is '$some_package::answer'\n";

61

data::Dumper

4.2 Declaring Package Variables With our
2) Use "our" to declare the variable.

package this_package;
our $name='John';
warn "name is '$name'";

Using "our" is the preferred method. You must have perl 5.6.0 or later for "our" declarations.

The difference between the two methods is that always using package qualified variable names means
you do NOT have to declare the package you are in. You can create variables in ANY namespace you
want, without ever having to declare the namespace explicitly. You can even declare variables in
someone else's package namespace. There is no restrictions in perl that prevent you from doing this.

To encourage programmers to play nice with each other's namespaces, the "our" function was created.
Declaring a variable with "our" will create the variable in the current namespace. If the namespace is
other than "main", then you will need to declare the package namespace explicitly. However, once a
package variable is declared with "our", the fully package qualified name is NOT required, and you can
refer to the variable just on its variable name, as example (2) above refers to the $name package
variable.

We do not HAVE to use the "our" shortcut even if we used it to declare it. The "our" declaration is a
shorthand for declaring a package variable. Once the package variable exists, we can access it any way
we wish.

package Hogs;
our $speak = 'oink';
warn "Hogs::speak is '$Hogs::speak'";
> Hogs::speak is 'oink' ...

4.3 Package Variables inside a Lexical Scope
When you declare a package inside a code block, that package namespace declaration remains in effect
until the end of the block, at which time, the package namespace reverts to the previous namespace.

package Hogs;
our $speak = 'oink';
{ # START OF CODE BLOCK
 package Heifers;
 our $speak = 'moo';
} # END OF CODE BLOCK
warn "speak is '$speak'";
> speak is 'oink' ...

62

The Heifers namespace still exists, as does all the variables that were declared in that namespace. Its
just that outside the code block, the "our Heifers;" declaration has worn off, and we now have to use a
fully package qualified name to get to the variables in Heifers package. This "wearing off" is a function
of the code block being a "lexical scope" and a package declaration only lasts to the end of the current
lexical scope. The package variables declared inside the code block "survive" after the code block ends.

{
package Heifers;
our $speak = 'moo';
}
print "Heifers::speak is '$Heifers::speak'\n";
> Heifers::speak is 'moo'

4.4 Lexical Scope
Lexical refers to words or text. A lexical scope exists while execution takes place inside of a particular
chunk of source code. In the above examples, the "package Heifers;" only exists inside the curly braces
of the source code. Outside those curly braces, the package declaration has gone out of scope, which is
a technical way of saying its "worn off". Scope refers to vision, as in telescope. Within a lexical scope,
things that have lexical limitations (such as a package declaration) are only "visible" inside that lexical
space.

So "lexical scope" refers to anything that is visible or has an effect only withing a certain boundary of
the source text or source code. The easiest way to demonstrate lexical scoping is lexical variables, and
to show how lexical variables differ from "our" variables.

4.5 Lexical Variables
Lexical variables are declared with the “my” keyword. Lexical variables declared inside a lexical scope
do not survive outside the lexical scope.

no warnings;
no strict;
{
 my $speak = 'moo';
}
warn "speak is '$speak'\n";
> speak is ''

The lexical variable "$speak" goes out of scope at the end of the code block (at the "}" character), so it
does not exist when we try to print it out after the block. We had to turn warnings and strict off just to
get it to compile because with warnings and strict on, perl will know $speak does not exist when you
attempt to print it, so it will throw an exception and quit.

63

Lexically scoped variables have three main features:

1) Lexical variables do not belong to any package namespace, so you cannot prefix them with a
package name. The example below shows that “my $cnt” is not the same as the “main::cnt”:

no warnings;
package main;
my $cnt='I am just a lexical';
warn "main::cnt is '$main::cnt'";
> main::cnt is ''

2) Lexical variables are only directly accessible from the point where they are declared to the end of the
nearest enclosing block, subroutine, eval, or file.

no strict;
{
 my $some_lex = 'I am lex';
}
warn "some_lex is '$some_lex'";
> some_lex is ''

3) Lexical variables are subject to "garbage collection" at the end of scope. If nothing is using a lexical
variable at the end of scope, perl will remove it from its memory. Every time a variable is declared with
"my", it is created dynamically, during execution. The location of the variable will change each time.
Note in the example below, we create a new $lex_var each time through the loop, and $lex_var is at a
different address each time.

my @cupboard;
for (1 .. 5) {

my $lex_var ='canned goods';
my $lex_ref = \$lex_var;
push(@cupboard, $lex_ref);
print "$lex_ref\n";

}
> SCALAR(0x812e770)
> SCALAR(0x812e6c8)
> SCALAR(0x812e6e0)
> SCALAR(0x81624c8)
> SCALAR(0x814cf64)

Lexical variables are just plain good. They generally keep you from stepping on someone else's toes.
They also keep your data more private than a package variable. Package variables are permanent, never
go out of scope, never get garbage collected, and are accessible from anyone's script.

64

4.6 Garbage Collection
When a lexical variable goes out of scope, perl will check to see if anyone is using that variable, and if
no one is using it, perl will delete that variable and free up memory.

The freed up memory is not returned to the system, rather the freed up memory is used for possible
declarations of new lexically scoped variables that could be declared later in the program.

This means that your program will never get smaller because of lexical variables going of of scope.
Once the memory is allocated for perl, it remains under perl's jurisdiction. But perl can use garbage
collected space for other lexical variables.

If a lexical variable is a referent of another variable, then the lexical will not be garbage collected when
it goes out of scope.

no strict;
my $referring_var;
{

my $some_lex = 'I am lex';
$referring_var=\$some_lex;

}
warn "some_lex is '$some_lex'";
warn "referring var refers to '$$referring_var'";
> some_lex is ''
> referring var refers to 'I am lex'

When the lexical $some_lex went out of scope, we could no longer access it directly. But since
$referring_var is a reference to $some_lex, then $some_lex was never garbage collected, and it retained
its value of "I am lex". The data in $some_lex was still accessible through referring_var.

Note that the named variable $some_lex went out of scope at the end of the code block and could not
be accessed by name.

4.6.1 Reference Count Garbage Collection
Perl uses reference count based garbage collection. It is rudimentary reference counting, so circular
references will not get collected even if nothing points to the circle. The example below shows two
variables that refer to each other but nothing refers to the two variables. Perl will not garbage collect
these variables even though they are completely inaccessible by the end of the code block.

{
my ($first,$last);
($first,$last)=(\$last,\$first);
}

65

4.6.2 Garbage Collection and Subroutines
Garbage collection does not rely strictly on references to a variable to determine if it should be garbage
collected. If a subroutine uses a lexical variable, then that variable will not be garbage collected as long
as the subroutine exists.

Subroutines that use a lexical variable declared outside of the subroutine declaration are called
"CLOSURES".

In the example below, the lexical variable, $cnt, is declared inside a code block and would normally get
garbage collected at the end of the block. However, two subroutines are declared in that same code
block that use $cnt, so $cnt is not garbage collected. Since $cnt goes out of scope, the only things that
can access it after the code block are the subroutines. Note that a reference to $cnt is never taken,
however perl knows that $cnt is needed by the subroutines and therefore keeps it around. The inc and
dec subroutines are subroutine closures.

{
my $cnt=0;
sub inc{$cnt++; print "cnt is '$cnt'\n";}
sub dec{$cnt--; print "cnt is '$cnt'\n";}

}
inc;
inc;
inc;
dec;
dec;
inc;
> cnt is '1'
> cnt is '2'
> cnt is '3'
> cnt is '2'
> cnt is '1'
> cnt is '2'

Subroutine names are like names of package variables. The subroutine gets placed in the current
declared package namespace. Therefore, named subroutines are like package variables in that, once
declared, they never go out of scope or get garbage collected.

66

4.7 Package Variables Revisited
Package variables are not evil, they are just global variables, and they inherit all the possible problems
associated with using global variables in your code. In the event you DO end up using a package
variable in your code, they do have some advantages. They are global, which means they can be a
convenient way for several different blocks of perl code to talk amongst themselves using an agreed
upon global variable as their channel.

Imagine several subroutines across several files that all want to check a global variable:
$Development::Verbose. If this variable is true, these subroutines print detailed information. If it is
false, these subroutines print little or no information.

package Development;
our $Verbose=1;
sub Compile {
if ($Development::Verbose) {
 print "compiling\n"; }
}
sub Link {
 if ($Development::Verbose){
 print "linking\n";
 }
}
sub Run {
 if ($Development::Verbose){
 print "running\n";
 }
}
Compile;
Link;
Run;
> compiling
> linking
> running

The three subroutines could be in different files, in different package namespaces, and they could all
access the $Development::Verbose variable and act accordingly.

67

4.8 Calling local() on Package Variables
When working with global variables, there are times when you want to save the current value of the
global variable, set it to a new and temporary value, execute some foreign code that will access this
global, and then set the global back to what it was.

Continuing the previous example, say we wish to create a RunSilent subroutine that stores
$Development::Verbose in a temp variable, calls the original Run routine, and then sets
$Development::Verbose back to its original value.

package Development;
our $Verbose=1;
sub Compile {
 if ($Development::Verbose) {
 print "compiling\n";
 }
}
sub Link {
 if ($Development::Verbose){
 print "linking\n";
 }
}
sub Run {
 if ($Development::Verbose){
 print "running\n";
 }
}
sub RunSilent {
 my $temp = $Development::Verbose;
 $Development::Verbose=0;
 Run;
 $Development::Verbose=$temp;
}
Compile;
Link;
RunSilent;
> compiling
> linking

This can also be accomplished with the "local()" function. The local function takes a package variable,
saves off the original value, allows you to assign a temp value to it. That new value is seen by anyone
accessing the variable. And at the end of the lexical scope in which local() was called, the original
value for the variable is returned. The RunSilent subroutine could be written like this:

sub RunSilent {
 local($Development::Verbose)=0;
 Run;

68

}
Perl originally started with nothing but package variables. The "my" lexical variables were not
introduced until perl version 4. So to deal with all the package variables, perl was given the local()
function. Local is also a good way to create a temporary variable and make sure you don't step on
someone else's variable of the same name.

5 Subroutines
Perl allows you to declare named subroutines and anonymous subroutines, similar to the way you can
declare named variables and anonymous variables.

5.1 Subroutine Sigil
Subroutines use the ampersand (&) as their sigil. But while the sigils for scalars, arrays, and hashes
are mandatory, the sigil for subroutines is optional.

5.2 Named Subroutines
Below is the named subroutine declaration syntax:

sub NAME BLOCK

NAME can be any valid perl identifier.

BLOCK is a code block enclosed in parenthesis.

The NAME of the subroutine is placed in the current package namespace, in the same way "our"
variables go into the current package namespace. So once a named subroutine is declared, you may
access it with just NAME if you are in the correct package, or with a fully package qualified name if
you are outside the package. And you can use the optional ampersand sigil in either case.

package MyArea;
sub Ping {print "ping\n";}
Ping;
&Ping;
MyArea::Ping;
&MyArea::Ping;
> ping
> ping
> ping
> ping

69

Once the current package declaration changes, you MUST use a fully package qualified subroutine
name to call the subroutine.

package MyArea;
sub Ping {print "ping\n";}
package YourArea;
MyArea::Ping;
&MyArea::Ping;
&Ping; # error, looking in current package YourArea
> ping
> ping
> Undefined subroutine &YourArea::Ping

5.3 Anonymous Subroutines
Below is the anonymous subroutine declaration syntax:

sub BLOCK

This will return a code reference, similar to how [] returns an array reference, and similar to how {}
returns a hash reference.

sub what_is_it {
my ($scalar)=@_;
my $string = ref($scalar);
print "ref returned '$string'\n";

}
my $temp = sub {print "Hello\n";};
what_is_it($temp);
> ref returned 'CODE'

5.4 Data::Dumper and subroutines
The contents of the code block are invisible to anything outside the code block. For this reason, things
like Data::Dumper cannot look inside the code block and show you the actual code. Instead
Data::Dumper does not even try and just gives you a place holder that returns a dummy string.

my $temp = sub {print "Hello\n";};
print Dumper $temp;
> $VAR1 = sub { "DUMMY" };

5.5 Passing Arguments to/from a Subroutine
Any values you want to pass to a subroutine get put in the parenthesis at the subroutine call. For normal
subroutines, all arguments go through the list context crushing machine and get reduced to a list of
scalars. The original containers are not known inside the subroutine. The subroutine will not know if
the list of scalars it receives came from scalars, arrays, or hashes. To avoid some of the list context
crushing, a subroutine can be declared with a prototype, which are discussed later.

70

5.6 Accessing Arguments inside Subroutines via @_
Inside the subroutine, the arguments are accessed via a special array called @_, since all the arguments
passed in were reduced to list context, these arguments fit nicely into an array. The @_ array can be
processed just like any other regular array. If the arguments are fixed and known, the preferred way to
extract them is to assign @_ to a list of scalars with meaningful names.

sub compare {
 my ($left,$right)=@_;
 return $left<=>$right;
}

The @_ array is "magical" in that it is really a list of aliases for the original arguments passed in.
Therefore, assigning a value to an element in @_ will change the value in the original variable that was
passed into the subroutine call. Subroutine parameters are effectively IN/OUT.

sub swap { (@_) = reverse(@_); }
my $one = "I am one";
my $two = "I am two";
swap($one,$two);
warn "one is '$one'";
warn "two is '$two'";
> one is 'I am two'
> two is 'I am one'

Assigning to the entire @_ array does not work, you have to assign to the individual elements. If swap
were defined like this, the variables $one and $two would remain unchanged.

sub swap {
 my ($left,$right)=@_;
 @_ = ($right,$left); #WRONG
}

5.7 Dereferencing Code References
Dereferencing a code reference causes the subroutine to be called. A code reference can be
dereferenced by preceding it with an ampersand sigil or by using the arrow operator and parenthesis "-
>()". The preferred way is to use the arrow operator with parens.

my $temp = sub {print "Hello\n";};
&{$temp};
&$temp;
$temp->(); # preferred
> Hello
> Hello
> Hello

71

5.8 Implied Arguments
When calling a subroutine with the "&" sigil prefix and no parenthesis, the current @_ array gets
implicitly passed to the subroutine being called. This can cause subtly odd behavior if you are not
expecting it.

sub second_level {
 print Dumper \@_;
}

sub first_level {
using '&' sigil and no parens.
doesn't look like I'm passing any params
but perl will pass @_ implicitly.
&second_level;

}

first_level(1,2,3);
> $VAR1 = [
> 1,
> 2,
> 3
>];

This generally is not a problem with named subroutines because you probably will not use the "&"
sigil. However, when using code references, dereferencing using the "&" may cause implied arguments
to be passed to the new subroutine. For this reason, the arrow operator is the preferred way to
dereference a code reference.

$code_ref->(); # pass nothing, no implicit @_
$code_ref->(@_); # explicitly pass @_
$code_ref->('one', 'two'); # pass new parameters

72

5.9 Subroutine Return Value
Subroutines can return a single value or a list of values. The return value can be explicit, or it can be
implied to be the last statement of the subroutine. An explicit return statement is the preferred approach
if any return value is desired.

return a single scalar
sub ret_scal {
 return "boo";
}
my $scal_var = ret_scal;
print Dumper \$scal_var;
return a list of values
sub ret_arr {
 return (1,2,3);
}
my @arr_var =ret_arr;
print Dumper \@arr_var;
> $VAR1 = \'boo';
> $VAR1 = [
> 1,
> 2,
> 3
>];

5.10 Returning False
The return value of a subroutine is often used within a boolean test. The problem is that the subroutine
needs to know if it is called in scalar context or array context.

Returning a simple "undef" value (or 0 or 0.0 or "") will work in scalar context, but in array context, it
will create an array with the first element set to undef. In boolean context, an array with one or more
elements is considered true.

A return statement by itself will return undef in scalar context and an empty list in list context. This is
the preferred way to return false in a subroutine.

sub this_is_false {
 return; # undef or empty list
}
my $scal_var = this_is_false;
my @arr_var = this_is_false;

73

5.11 Using the caller() Function in Subroutines
The caller() function can be used in a subroutine to find out information about where the subroutine
was called from and how it was called. Caller takes one argument that indicates how far back in the call
stack to get its information from. For information about the current subroutine, use caller(0).

sub HowWasICalled {
 my @info = caller(0);
 print Dumper \@info;
}
HowWasICalled;
>$VAR1 = [
> 'main',
> './test.pl',
> 13,
> 'main::HowWasICalled',
> 1,
> undef,
> undef,
> undef,
> 2,
> 'UUUUUUUUUUUU'
>];

The caller() function returns a list of information in the following order

0 $package package namespace at time of call
1 $filename filename where called occurred
2 $line line number in file where call occurred
3 $subroutine name of subroutine called
4 $hasargs true if explicit arguments passed in
5 $wantarray list=1, scalar=0, void=undef
6 $evaltext evaluated text if an eval block
7 $is_require true if created by "require" or "use"
8 $hints internal use only, disregard
9 $bitmask internal use only, disregard

Note in the example above, the code is in a file called test.pl. The call occurred in package main, the
default package namespace, and it occurred at line 13 of the file. The package qualified name of the
subroutine that was called was main::HowWasICalled. The package qualified name must be given
since you don't know what package is current where the subroutine was called from, that information is
hidden in lexical scope.

74

5.12 The caller() function and $wantarray
The argument of interest is the $wantarray argument. This indicates what return value is expected of
the subroutine from where it was called. The subroutine could have been called in void context
meaning the return value is thrown away. Or it could have been called and the return value assigned to
a scalar. Or it could have been called and the return value assigned to a list of scalars.

sub CheckMyWantArray {
 my @info = caller(0);
 my $wantarray = $info[5];
 $wantarray='undef' unless(defined($wantarray));
 print "wantarray is '$wantarray'\n";
}
CheckMyWantArray; #undef
my $scal = CheckMyWantArray; # 0
my @arr = CheckMyWantArray; # 1
> wantarray is 'undef'
> wantarray is '0'
> wantarray is '1'

5.13 Context Sensitive Subroutines with wantarray()
You can use the wantarray variable from caller() to create a subroutine that is sensitive to the context in
which it was called.

sub ArrayProcessor {
 my @info = caller(0);
 my $wantarray = $info[5];
 return unless(defined($wantarray));
 if($wantarray) {
 return @_;
 } else {
 return scalar(@_);
 }
}
my @arr=qw(alpha bravo charlie);
ArrayProcessor(@arr);
my $scal = ArrayProcessor(@arr); # 3
my @ret_arr = ArrayProcessor(@arr); # alpha ...
print "scal is '$scal'\n";
print Dumper \@ret_arr;
> scal is '3'
>$VAR1 = [
> 'alpha',
> 'bravo',
> 'charlie'
>];

75

6 Compiling and Interpreting
When perl works on your source code, it will always be in one of two modes: compiling or interpreting.
Perl has some hooks to allow access into these different cycles. They are code blocks that are prefixed
with BEGIN, CHECK, INIT, and END.

Compiling: translating the source text into machine usable internal format.

Interpreting: executing the machine usable, internal format.

The BEGIN block is immediate.

BEGIN -> execute block as soon as it is compiled, even before compiling anything else.

The other blocks, including normal code, do not execute until after the entire program has been
compiled. When anything other than a BEGIN block is encountered, they are compiled and scheduled
for execution, but perl continues compiling the rest of the program. The execution order is CHECK,
INIT, normal code, and END blocks.

CHECK -> Schedule these blocks for execution after all source code has been compiled.

INIT-> Schedule these blocks for execution after the CHECK blocks have executed.

normal code -> Schedule normal code to execute after all INIT blocks.

END -> Schedule for execution after normal code has completed.

Multiple BEGIN blocks are executed immediately in NORMAL declaration order.

Multiple CHECK blocks are scheduled to execute in REVERSE declaration order.

Multiple INIT blocks are scheduled to execute in NORMAL declaration order.

Multiple END blocks are scheduled to execute in REVERSE declaration order.

76

An example containing several CHECK, INIT, normal code, and END blocks. The output shows the
execution order:

END { print "END 1\n" }
CHECK { print "CHECK 1\n" }
BEGIN { print "BEGIN 1\n" }
INIT { print "INIT 1\n" }
print "normal\n";
INIT { print "INIT 2\n" }
BEGIN { print "BEGIN 2\n" }
CHECK { print "CHECK 2\n" }
END { print "END 2\n" }
> BEGIN 1
> BEGIN 2
> CHECK 2
> CHECK 1
> INIT 1
> INIT 2
> normal
> END 2
> END 1

77

7 Code Reuse, Perl Modules
Lets say you come up with some really great chunks of perl code that you want to use in several
different programs. Perhaps you have some subroutines that are especially handy, and perhaps they
have some private data associated with them. The best place to put code to be used in many different
programs is in a "Perl Module", and then "use" that module. A perl module is really just a file with an
invented name and a ".pm" extension. The "pm" is short for "perl module". If you had some handy
code for modeling a dog, you might put it in a module called Dog.pm, and then you would use the
"use" statement to read in the module.

The content of a perl module is any valid perl code. Generally, perl modules contain declarations, such
as subroutine declarations and possibly declarations of private or public variables. These declared
subroutines can be called and public variables can be accessed by any perl script that uses the module.

It is standard convention that all perl modules start out with a "package" declaration that declares the
package namespace to be the same as the module name. After any new package declaration you will
need to turn on warnings, etc.

Here is an example of our Dog module.

###filename: Dog.pm
package Dog;
use warnings; use strict; use Data::Dumper;
sub Speak { print "Woof!\n"; }
1; # MUST BE LAST STATEMENT IN FILE

All perl modules must end with "1;" otherwise you will get a compile error:
Dog.pm did not return a true value ...

8 The use Statement
The "use" statement allows a perl script to bring in a perl module and use whatever declarations have
been made available by the module. Continuing our example, a file called script.pl could bring in the
Dog module like this:

use Dog;
Dog::Speak;
> Woof!

Both files, Dog.pm and script.pl, would have to be in the same directory.

The Dog module declares its package namespace to be Dog. The module then declares a subroutine
called "Speak", which, like any normal subroutine, ends up in the current package namespace, Dog.
Once the Dog module has been used, anyone can call the subroutine by calling Dog::Speak;

78

9 The use Statement, Formally
The "use" statement can be formally defined as this:

use MODULENAME (LISTOFARGS);

The "use" statement is exactly equivalent to this:

BEGIN
{
 require MODULENAME;
 MODULENAME->import(LISTOFARGS);
}

The MODULENAME follows the package namespace convention, meaning it would be either a single
identifier or multiple identifiers separated by double-colons. These are all valid MODULENAMES:

use Dog;
use Pets::Dog;
use Pets::Dog::GermanShepard;
use Pets::Cat::Persian;

User created module names should be mixed case. Module names with all lower case are reserved for
built in pragmas, such as "use warnings;" Module names with all upper case letters are just ugly and
could get confused with built in words.

The "require" statement is what actually reads in the module file.

When performing the search for the module file, "require" will translate the double colons into
whatever directory separator is used on your system. For Linux style systems, it would be a "/". So perl
would look for Pets::Dog::GermanShepard in Pets/Dog/ for a file called GermanShepard.pm

9.1 The @INC Array
The "require" statement will look for the module path/file in all the directories listed in a global array
called @INC. Perl will initialize this array to some default directories to look for any modules. If you
want to create a subdirectory just for your modules, you can add this subdirectory to @INC and perl
will find any modules located there.

Because the "require" statement is in a BEGIN block, though, it will execute immediately after being
compiled. So this will not work:

push(@INC,'/home/username/perlmodules');
use Dogs;

79

This is because the "push" statement will get compiled and then be scheduled for execution after the
entire program has been compiled. The "use" statement will get compiled and executed immediately,
before the "push" is executed, so @INC will not be changed when "use" is called.

You could say something like this:

BEGIN { push(@INC,'/home/username/perlmodules'); }
use Dogs;

9.2 The use lib Statement
The "use lib" statement is my preferred way of adding directory paths to the @INC array, because it
does not need a BEGIN block. Just say something like this:

use lib '/home/username/perlmodules';

Also, for you Linux heads, note that the home directory symbol "~" is only meaningful in a linux shell.
Perl does not understand it. So if you want to include a directory under your home directory, you will
need to call "glob" to translate "~" to something perl will understand. The "glob" function uses the shell
translations on a path.

use lib glob('~/perlmodules');
use Dogs;

9.3 The PERL5LIB and PERLLIB Environment Variables
The "require" statement also searches for MODULENAME in any directories listed in the environment
variable called PERL5LIB. The PERL5LIB variable is a colon separated list of directory paths. Consult
your shell documentation to determine how to set this environment variable.

If you don't have PERL5LIB set, perl will search for MODULENAME in any directory listed in the
PERLLIB environment variable.

9.4 The require Statement
Once the require statement has found the module, perl compiles it. Because the require statement is in a
BEGIN block, the module gets executed immediately as well. This means any executable code gets
executed. Any code that is not a declaration will execute at this point.

The MODULENAME->import statement is then executed.

80

9.5 MODULENAME -> import (LISTOFARGS)
The MODULENAME->import(LISTOFARGS) statement is a "method call", which has not been
introduced yet. A method call is a fancy way of doing a subroutine call with a couple of extra bells and
whistles bolted on.

Basically, if your perl module declares a subroutine called "import" then it will get executed at this
time.

More advancedly, one of the bells and whistles of a method call is a thing called "inheritance", which
has not been introduced yet. So, to be more accurate, if your perl module OR ITS BASE CLASS(ES)
declares a subroutine called "import" then it will get executed at this time.

The import method is a way for a module to import subroutines or variables to the caller's package.
This happens when you use Data::Dumper in your script. Which is why you can say

use Data::Dumper;
print Dumper \@var;

instead of having to say:

use Data::Dumper;
print Data::Dumper::Dumper \@var;

A subroutine called "Dumper" from the package Data::Dumper gets imported into your package
namespace.

81

data::Dumper

9.6 The use Execution Timeline
The following example shows the complete execution timeline during a use statement.

#!/usr/local/env perl
###filename:script.pl
use warnings; use strict; use Data::Dumper;
warn "just before use Dog";
use Dog ('GermanShepard');
warn "just after use Dog";
Dog::Speak;
###filename:Dog.pm
package Dog;
use warnings; use strict; use Data::Dumper;
warn "executing normal code";
sub Speak { print "Woof!\n"; }
sub import {
 warn "calling import";
 print "with the following args\n";
 print Dumper \@_;
}
1; #MUST BE LAST STATEMENT IN FILE
> executing normal code at Dog.pm line 4.
> calling import at Dog.pm line 7.
> with the following args
> $VAR1 = [
> 'Dog',
> 'GermanShepard'
>];
> just before use Dog at ./script.pl line 4.
> just after use Dog at ./script.pl line 6.
> Woof!

82

10 bless()
The bless() function is so simple that people usually have a hard time understanding it because they
make it far more complicated than it really is. All bless does is change the string that would be returned
when ref() is called. The bless() function is the basis for Object Oriented Perl, but bless() by itself is
overwhelmingly simple.

Quick reference refresher: Given an array referent, @arr, and a reference, $rarr=\@arr, then calling
ref($rarr) will return the string "ARRAY".

my @arr=(1,2,3); # referent
my $rarr = \@arr; # reference to referent
my $str = ref($rarr); # call ref()
warn "str is '$str'";
> str is 'ARRAY'

Normally, ref() will return SCALAR, ARRAY, HASH, CODE, or empty-string depending on what
type of referent it is referred to.

warn ref(\4);
warn ref([]);
warn ref({});
warn ref(sub{});
warn "'".ref(4)."'";
> SCALAR at ./script.pl line 4.
> ARRAY at ./script.pl line 5.
> HASH at ./script.pl line 6.
> CODE at ./script.pl line 7.
> '' at ./script.pl line 8.

The bless function takes a reference and a string as input.

The bless function modifies the referent pointed to by the reference and attaches the given string such
that ref() will return that string.

The bless function will then return the original reference.

bless REFERENCE, STRING;

83

Here is an example of bless() in action. Note this is exactly the same as the code in the first example,
but with one line added to do the bless:

my @arr=(1,2,3); # referent
my $rarr = \@arr; # reference to referent
bless($rarr, "Counter");
my $str = ref($rarr); # call ref()
warn "str is '$str'";
> str is 'Counter'

Since bless() returns the reference, we can call ref() on the return value and accomplish it in one line:

my $sca=4;
warn ref(bless(\$sca,"Four"));
warn ref(bless([],"Box"));
warn ref(bless({},"Curlies"));
warn ref(bless(sub{},"Action"));
> Four at ./script.pl line 5.
> Box at ./script.pl line 6.
> Curlies at ./script.pl line 7.
> Action at ./script.pl line 8.

All bless() does is affect the value returned by ref(). That is it.

You might be wondering why the word "bless" was chosen. If a religious figure took water and blessed
it, then people would refer to it as "holy water". The constitution and makeup of the water did not
change, however it was given a new name, and because of that name it might be used differently.

In perl, bless() changes the name of a referent. It does not affect the contents of the referent, only the
name returned by ref(). But because of this new name, the referent might be used differently or behave
differently. We will see this difference with method calls.

84

11 Method Calls
We have seen method calls before. The MODULENAME->import(LISTOFARGS) was a method
call, but we had to do some handwaving to get beyond it, calling it a fancy subroutine call.

Quick review of package qualified subroutine names: When you declare a subroutine, it goes into the
current package namespace. You can call the subroutine using its short name if you are still in the
package. Or you can use the fully qualified package name, and be guaranteed it will work every time.

package Dog;
sub Speak { print "Woof\n"; }
Speak;
Dog::Speak;
> Woof
> Woof

A method call is similar. Here is the generic definition:

INVOCANT -> METHOD (LISTOFARGS);

The INVOCANT is the thing that "invoked" the METHOD. An invocant can be several different
things, but the simplest thing it can be is just a bareword package name to go look for the subroutine
called METHOD.

Dog -> Speak;
> Woof

So it is almost the same as using a package qualified subroutine name Dog::Speak. So what is
different?

First, the INVOCANT always gets unshifted into the @_ array in the subroutine call.

package Dog;
use warnings; use strict; use Data::Dumper;
sub Speak {
 print Dumper \@_;
}
Dog -> Speak (3);
> $VAR1 = [
> 'Dog', # INVOCANT
> 3 # first user argument
>];

This may not seem very useful, but an INVOCANT can be many different things, some more useful
than others. The second difference between a subroutine call and a method call is inheritance.

85

11.1 Inheritance
Say you want to model several specific breeds of dogs. The specific breeds of dogs will likely be able
to inherit some behaviors (subroutine/methods) from a base class that describes all dogs. Say we model
a German Shepard that has the ability to track a scent better than other breeds. But German Shepards
still bark like all dogs.

###filename:Dog.pm
package Dog;
use warnings; use strict; use Data::Dumper;
sub Speak {
 my ($invocant, $count) = @_;
 warn "invocant is '$invocant'";
 for(1 .. $count) { warn "Woof"; }
}
1;

###filename:Shepard.pm
package Shepard;
use base Dog;
sub Track { warn "sniff, sniff"; }
1;

#!/usr/local/env perl
###filename:script.pl
use Shepard;
Shepard->Speak(2);
Shepard->Track;
> invocant is 'Shepard' at Dog.pm line 6.
> Woof at Dog.pm line 8.
> Woof at Dog.pm line 8.
> sniff, sniff at Shepard.pm line 4.

Notice that script.pl used Shepard, not Dog. And script.pl always used Shepard as the invocant for its
method calls. When script.pl called Shepard->Speak, perl first looked in the Shepard namespace for a
subroutine called Shepard::Speak. It did not find one. So then it looked and found a BASE of Shepard
called Dog. It then looked for a subroutine called Dog::Speak, found one, and called that subroutine.

Also notice that the subroutine Dog::Speak received an invocant of "Shepard". Even though perl ended
up calling Dog::Speak, perl still passes Dog::Speak the original invocant, which was "Shepard" in this
case.

Shepard INHERITED the Speak subroutine from the Dog package. The unexplained bit of magic is
that inheritance uses the "use base" statement to determine what packages to inherit from.

86

11.2 use base
This statement:

use base MODULENAME;

is functionally identical to this:

BEGIN
{
 require MODULENAME;
 push(@ISA, MODULENAME);
}

The require statement goes and looks for MODULENAME.pm using the search pattern that we
described in the "use" section earlier.

The push(@ISA,MODULENAME) is new. When a method call looks in a package namespace for a
subroutine and does not find one, it will then go through the contents of the @ISA array. The @ISA
array contains any packages that are BASE packages of the current package.

The @ISA array is named that way because "Shepard" IS A "Dog", therefore ISA. The search order is
depth-first, left-to-right. This is not necessarily the "best" way to search, but it is how perl searches, so
you will want to learn it. If this approach does not work for your application, you can change it with a
module from CPAN.

87

Imagine a Child module has the following family inheritance tree:

Child.pm => @ISA = qw (Father Mother);
Father.pm => @ISA = qw (FathersFather FathersMother);
Mother.pm => @ISA = qw (MothersFather MothersMother);
FathersFather.pm => @ISA = ();
FathersMother.pm => @ISA = ();
MothersFather.pm => @ISA = ();
MothersMother.pm => @ISA = ();

Perl will search for Child->Method through the inheritance tree in the following order:

Child
Father
FathersFather
FathersMother
Mother
MothersFather
MothersMother

11.3 INVOCANT->isa(BASEPACKAGE)
The "isa" method will tell you if BASEPACKAGE exists anywhere in the @ISA inheritance tree.

Child->isa("MothersMother"); # TRUE
Child->isa("Shepard"); # FALSE

11.4 INVOCANT->can(METHODNAME)
The "can" method will tell you if the INVOCANT can call METHODNAME successfully.

Shepard->can("Speak"); # TRUE (Woof)
Child->can("Track"); # FALSE (can't track a scent)

11.5 Interesting Invocants
So far we have only used bareword invocants that correspond to package names.

Shepard->Track;

Perl allows a more interesting invocant to be used with method calls: a blessed referent. Remember
bless() changes the string returned by ref(). Well, when using a reference as an invocant, perl will call
ref() on the reference and use the string returned as starting package namespace to begin searching for
the method/subroutine.

88

Here is our simple Dog example but with a blessed invocant.

###filename:Dog.pm
package Dog;
use warnings; use strict; use Data::Dumper;
sub Speak {
 my ($invocant, $count) = @_;
 warn "invocant is '$invocant'";
 for(1 .. $count) { warn "Woof"; }
} 1;

#!/usr/local/env perl
###filename:script.pl
use Dog;
my $invocant=bless {},'Dog'; ### BLESSED INVOCANT
$invocant->Speak(2);

> invocant is 'Dog=HASH(0x8124394)' at Dog.pm line 6
> Woof at Dog.pm line 8.
> Woof at Dog.pm line 8.

The my $invocant=bless {},"Dog"; is the new line. The bless part creates an anonymous
hash, {}, and blesses it with the name "Dog". If you called ref($invocant), it would return the string
"Dog".

So perl uses "Dog" as its "child" class to begin its method search through the hierarchy tree. When it
finds the method, it passes the original invocant, the anonmous hash, to the method as the first
argument.

Well, since we have an anonymous hash passed around anyway, maybe we could use it to store some
information about the different dogs that we are dealing with. In fact, we already know all the grammar
we need to know about Object Oriented Perl Programming, we just need to speak different sentences
now.

89

12 Procedural Perl
So far, all the perl coding we have done has been "procedural" perl. When you hear "procedural" think
of "Picard", as in Captain Picard of the starship Enterprise. Picard always gave the ship's computer
commands in the form of procedural statements.

Computer, set warp drive to 5.
Computer, set shields to "off".
Computer, fire weapons: phasers and photon
torpedoes.

The subject of the sentences was always "Computer". In procedural programming, the subject
"computer" is implied, the way the subject "you" is implied in the sentence: "Stop!"

The verb and direct object of Picard's sentences become the subroutine name in proceedural
programming. Whatever is left become arguments passed in to the subroutine call.

set_warp(5);
set_shield(0);
fire_weapons qw(phasers photon_torpedoes);

13 Object Oriented Perl
Object oriented perl does not use an implied "Computer" as the subject for its sentences. Instead, it uses
what was the direct object in the procedural sentences and makes it the subject in object oriented
programming.

Warp Drive, set yourself to 5.
Shields, set yourself to "off".
Phasors, fire yourself.
Torpedoes, fire yourself.

But how would we code these sentences?

90

Here is a minimal example of object oriented perl. There is a class called “Animal”. It has a constructor
called MakeNew and a method called Speak. The script uses the Animal module, creates instances of
Animal objects, and calls the Speak method on each one.

###filename:Animal.pm
package Animal;
sub MakeNew { # our constructor
 my ($invocant,$name)=@_; # class and name are passed in
 my $object = {}; # hash to store data
 $object->{Name}=$name; # put name into hash
 bless($object, $invocant); # bless hash into class
 return $object; # return hash/instance/object
}

sub Speak { # some method
 my ($obj)=@_; # hash/instance/object passed in
 my $name = $obj->{Name}; # get name of this instance
 print "$name growls\n"; # say who is speaking
}
1;

#!/usr/local/env perl
###filename:script.pl
use Animal;

note that 'Animal' is passed in to MakeNew
as first parameter. 'Samson' is second parameter.
'Animal' becomes $invocant. 'Samson' becomes $name.
my $lion = Animal->MakeNew('Samson'); # create an instance

note that the blessed hash reference, $lion, is passed
into Speak method as first parameter. It becomes $obj.
$lion->Speak(); # call method on this instance

my $tiger = Animal->MakeNew('Fuzzball');
$tiger->Speak();

my $bear = Animal->MakeNew('Smokey');
$tiger->Speak();

> Samson growls
> Fuzzball growls
> Smokey growls

91

So what? Basic Object Oriented does nothing that cannot be just as easily done in procedural perl. But
once you start adding things like inheritance and polymorphism, the advantages of object oriented
become more obvious. The first thing we want to do is process objects as an array, rather than as
individually named variables.

Lets return to a familiar example, our Dog module. Assume we want to keep track of several dogs at
once. Perhaps we are coding up an inventory system for a pet store.

First, we want a common way to handle all pets, so we create an Animal.pm perl module. This module
contains one subroutine that takes the invocant and a Name, puts the Name into a hash, blesses the
hash, and returns a reference to the hash. This return value becomes a "Animal" object. This subroutine
is an object contructor.

Then we create a Dog module that uses Animal as its base to get the contructor. We then add a method
to let dogs bark. The method prints the name of the dog when they bark so we know who said what.

92

The script.pl creates three dogs and stores them in an array. The script then goes through the array and
calls the Speak method on each object.

###filename:Animal.pm
package Animal;
sub New {
 my ($invocant,$name)=@_;
 return bless({Name=>$name},$invocant);
} 1;

###filename:Dog.pm
package Dog;
use base Animal;
sub Speak {
 my ($obj)=@_;
 my $name=$obj->{Name};
 warn "$name says Woof";
} 1;

#!/usr/local/env perl
###filename:script.pl
use Dog;
my @pets;
create 3 Dog objects and put them in @pets array
foreach my $name qw(Butch Spike Fluffy) {
 push(@pets, Dog->New($name));
}
have every pet speak for themselves.
foreach my $pet (@pets) { $pet->Speak; }

> Butch says Woof at Dog.pm line 7.
> Spike says Woof at Dog.pm line 7.
> Fluffy says Woof at Dog.pm line 7.

Notice the last foreach loop in script.pl says $pet->Speak. This is object oriented programming,
because if you translated that statement to English, it would be "Pet, speak for yourself". The subject of
the sentence is "Pet", rather than the implied "Computer" of procedural programming.

Object Oriented Programming statements are of the form:
$subject -> verb (adjectives, adverbs, etc);

93

13.1 Class
The term "class" refers to a perl package/module that is used in an object oriented way. A perl package
that is designed for procedural use is simply called a package. If it's an OO package, you can call it a
“class”.

13.2 Polymorphism
Polymorphism is a real fancy way of saying having different types of objects that have the same
methods. Expanding our previous example, we might want to add a Cat class to handle cats at the pet
store.

###filename:Cat.pm
package Cat;
use base Animal;
sub Speak {
 my $obj=shift;
 my $name=$obj->{Name};
 warn "$name says Meow";
} 1;

Then we modify script.pl to put some cats in the @pets array.

#!/usr/local/env perl
###filename:script.pl
use Dog; use Cat;
my @pets;
#create some dog objects
foreach my $name qw(Butch Spike Fluffy) {
 push(@pets, Dog->New($name));
}
create some cat objects
foreach my $name qw(Fang Furball Fluffy) {
 push(@pets, Cat->New($name));
}
have all the pets say something.
foreach my $pet (@pets) {
 $pet->Speak; # polymorphism at work
}

> Butch says Woof at Dog.pm line 7.
> Spike says Woof at Dog.pm line 7.
> Fluffy says Woof at Dog.pm line 7.
> Fang says Meow at Cat.pm line 7.
> Furball says Meow at Cat.pm line 7.
> Fluffy says Meow at Cat.pm line 7.

94

Notice how the last loop goes through all the pets and has each one speak for themselves. Whether its a
dog or cat, the animal will say whatever is appropriate for its type. This is polymorphism. The code
processes a bunch of objects and calls the same method on each object. And each object just knows
how to do what it should do.

13.3 SUPER
SUPER:: is an interesting bit of magic that allows a child object with a method call that same method
name in its parent's class.

Back to the dogs. To shorten the example, the constructor New was moved to Dog.pm. The Shepard
module uses Dog as its base, and has a Speak method that growls, and then calls its ancestor's Dog
version of speak.

###filename:Dog.pm
package Dog;
sub New {
 return bless({Name=>$_[1]},$_[0]);
}
sub Speak {
 my $name=$_[0]->{Name};
 warn "$name says Woof";
} 1;

###filename:Shepard.pm
package Shepard;
use base Dog;
sub Speak {
 my $name=$_[0]->{Name};
 warn "$name says Grrr";
 $_[0]->SUPER::Speak; ### SUPER
} 1;

#!/usr/local/env perl
###filename:script.pl
use warnings; use strict; use Data::Dumper;
use Shepard;
my $dog=Shepard->New("Spike");
$dog->Speak;

> Spike says Grrr at Shepard.pm line 6.
> Spike says Woof at Dog.pm line 8.

Without the magic of SUPER, the only way that Shepard can call Dog's version of speak is to use a
fully package qualified name Dog::Speak(); But this scatters hardcoded names of the base class
throughout Shepard, which would make changing the base class a lot of work.

95

If Shepard's version of Speak simply said $_[0]->Speak, it would get into an infinite loop calling itself
recursively. SUPER is a way of saying, "look at my ancestors and call their version of this method."

There are some limitations with SUPER. Consider the big family tree inheritance diagram in the "use
base" section of this document (the one with Child as the root, Father and Mother as parents, and
FathersFather, FathersMother, etc as grandparents).

Imagine an object of type "Child". If "Father" has a method called Speak and that method calls
SUPER::Speak, the only modules that will get looked at is "FathersFather" and "FathersMother".
SUPER looks up the hierarchy starting at the class from where it was called. This means if the method
FathersFather needed to call was in MothersMother, then SUPER will not work.

This could be considered a good thing, since you would assume that Father was designed only knowing
about FathersFather and FathersMother. When Father was coded, MothersMother was a complete
stranger he would not meet for years to come. So designing Father to rely on his future, have-not-even-
met-her-yet mother-in-law, could be considered a bad thing.

However, it is legitimate to have what you might consider to be "universal" methods that exist for
every class. Instead of a class called "Child" imagine a class called "CoupleAboutToGetMarried", and
every base class has a method called "ContributeToWedding". In that case, every class could do its
part, and then call SUPER::ContributeToWedding. The FatherOfTheBride would pay for the wedding,
the FatherOfTheGroom would pay for the rehersal dinner, and so on and so forth.

Unfortunately, there is no easy, built-in way to do this in perl.

I will refer you to the "NEXT.pm" module available on CPAN.

SUPER does have its uses, though. Many times a class might exist that does ALMOST what you want
it to do. Rather than modify the original code to do what you want it to, you could instead create a
derived class that inherits the base class and rewrite the method to do what you want it to do. For
example, you might want a method that calls its parent method but then multiplies the result by minus
one or something. In cases like this, SUPER will do the trick.

96

13.4 Object Destruction
Object destruction occurs when all the references to a specific object have gone out of lexical scope,
and the object is scheduled for garbage collection. Just prior to deleting the object and any of its
internal data, perl will call the DESTROY method on the object. If no such method exists, perl silently
moves on and cleans up the object data.

###filename:Dog.pm
package Dog;
sub New {
 return bless({Name=>$_[1]},$_[0]);
}
sub DESTROY {
 warn (($_[0]->{Name})." has been sold");
} 1;

#!/usr/local/env perl
###filename:script.pl
use warnings; use strict; use Data::Dumper;
use Dog;
my $dog=Dog->New("Spike");
$dog=undef;

> Spike has been sold at Dog.pm line 7.

The DESTROY method has similar limitations as SUPER. With an object that has a complex
hierarchical family tree, perl will only call the FIRST method of DESTROY that it finds in the
ancestry. If Mother and Father both have a DESTROY method, then Mother's not going to handle her
demise properly and you will likely have ghosts when you run your program.

The NEXT.pm module on CPAN also solves this limitation.

97

14 Object Oriented Review

14.1 Modules
The basis for code reuse in perl is a module. A perl module is a file that ends in ".pm" and declares a
package namespace that (hopefully) matches the name of the file. The module can be designed for
procedural programming or object oriented programming (OO). If the module is OO, then the module
is sometimes referred to as a "class".

14.2 use Module
The code in a perl module can be made available to your script by saying "use MODULE;" The "use"
statement will look for the module in the directories listed in the PERL5LIB environment variable and
then the directories listed in the @INC variable.

The best way to add directories to the @INC variable is to say

use lib "/path/to/dir";

Any double-colons (::) in the module name being used get converted to a directory separator symbol of
the operating system.

14.3 bless / constructors
If the module is designed for procedural programming, it will provide subroutine declarations that can
be called like normal subroutines. If the module is designed for object oriented use, it will declare
subroutines that will be used as constructors or methods.

Constructors are subroutines that create a reference to some variable, use the reference to bless the
variable into the class, and then return the reference. Once its referent is blessed, it can be used as an
object, and the reference is a handy way of passing the object around. The object is usually a hash.
Keys to the hash correspond to object attribute names, and the Values correspond to the attribute values
specific to that particular instance. In the Animal.pm module example, one key was "Name", and
different instances had Name values of "Fluffy", "Spike", and so on.

The best way of calling a constructor is to use the arrow operator:

my $object = Classname->Constructor(arguments);

In the Animal.pm class, this would look like:

my $pet = Animal->New('Spike')

The name of the constructor can be any valid subroutine name, but is usually "new" or "New".

98

14.4 Methods
Once an instance of an object has been constructed, methods can be called on the instance to get
information, change values, perform operations, etc. A method is simply a subroutine that receives a
reference to the instance variable as its first argument. Methods should be thought of as "actions" to be
performed on the instance, or "verbs" in a sentences with instances being the "subject".

In the above examples, "Speak" was a method that used the Name of the instance to print out "$name
says woof". The preferred way of calling a method is using the arrow method.

$ObjectInstance -> Method (list of arguments);

In the Animal.pm example, this would look like:

$pet->Speak;

14.5 Inheritance
Classes can inherit methods from base classes. This allows many similar classes to put all their
common methods in a single base class. To have a class inherit from a base class, use the "use base"
statement.

use base BaseClassName;

In one example above, the Cat and Dog classes both inherit from a common Animal class. Both Dog
and Cat classes inherit the constructor "New" method from the Animal base class.

The classes Cat and Dog inherit from the base class Animal. Cat and Dog are "derived" from Animal.

14.6 Overriding Methods and SUPER
Classes can override the methods of their base classes. If a base class contains a method called
"MethodName", then a derived class can override the base class method by declaring its own
subroutine called MethodName.

In the examples above, the GermanShepard derived class overrode the Dog base class Speak method
with its own method.

If a derived class overrides a method of its base class, it may want to call its base class method. The
only way to accomplish this is with the SUPER:: pseudopackage name. The GermanShepard method
named Speak called the Dog version of Speak by calling:

$obj->SUPER::Speak;

99

15 CPAN
CPAN is an acronym for "Comprehensive Perl Archive Network". There is a CPAN website, which
contains a plethora of perl module for anyone to download. There is also a CPAN perl module, which
provides a shell interface for automating the downloading of perl modules from the CPAN website. A
"perldoc" utility comes with perl that allows viewing of POD, which is "Plain Old Documentation"
embedded within the perl modules downloaded from CPAN. And finally, there is a "h2xs" utility,
which automates the creation of a module to be uploaded to CPAN.

15.1 CPAN, The Web Site
CPAN is a website that contains all things perl: help, FAQs, source code to install perl, and most
importantly, a plethora of perl module so that you can re-use someone else's code.

http://www.cpan.org

CPAN contains a number of search engines. Once you find a module that might do what you need, you
can view the README file that is usually available online before actually downloading the module. If
the README looks promising, then download the tarball, which will be a file with a tar.gz extension.
Here is the standard installation steps for a module. This example is for the NEXT.pm module, which is
contained in NEXT-0.60.tar.gz (you should use the latest version, if available.)

> gunzip NEXT-0.60.tar.gz
> tar -xf NEXT-0.60.tar
> cd NEXT-0.60

From here, most modules install with the exact same commands:

> perl Makefile.PL
> make
> make test
> su root
> make install
> exit

The "make install" step requires root privileges. The "exit" step is shown just so you remember to log
out from root.

If you do not have root privileges and the module is pure perl (just a .pm file), then you can copy the
.pm file to your home directory (or anywhere you have read/write privileges), and then set your
PERL5LIB environment variable to point to that directory.

15.2 CPAN, The Perl Module
The CPAN.pm module is a module that automates the installation process. you give it the name of a
module, and it downloads it from the web, untars it, and installs it for you. More interestingly, it will
install any dependencies for you as well. If you install a module that requires a separate module, it
installs both modules for you with one command.

100

CPAN.pm will want you to have lynx installed on your machine. Lynx is a text-based webbrowser.
CPAN.pm will also want ncftpget, which is an Internet file transfer program for scripts. Install these
on your system before running the CPAN module.

The CPAN.pm module is run from a shell mode as root (you need root privileges to do the install).
Change to root, and then run the CPAN.pm module shell.

> su root
> perl -MCPAN -e shell

The first time it is run, it will ask you a bunch of configuration questions. Most can be answered with
the default value (press <return>).

101

Here is a log from the CPAN being run for the first time on my machine:

Are you ready for manual configuration? [yes]
CPAN build and cache directory? [/home/greg/.cpan]
Cache size for build directory (in MB)? [10]
Perform cache scanning (atstart or never)? [atstart]
Cache metadata (yes/no)? [yes]
Your terminal expects ISO-8859-1 (yes/no)? [yes]
Policy on building prerequisites (follow, ask or
ignore)? [ask]
Where is your gzip program? [/usr/bin/gzip]
Where is your tar program? [/bin/tar]
Where is your unzip program? [/usr/bin/unzip]
Where is your make program? [/usr/bin/make]
Where is your lynx program? []
> /usr/bin/lynx
Where is your wget program? [/usr/bin/wget]
Where is your ncftpget program? []
> /usr/bin/ncftpget
Where is your ftp program? [/usr/bin/ftp]
What is your favorite pager program? [/usr/bin/less]
What is your favorite shell? [/bin/bash]
Parameters for the 'perl Makefile.PL' command?
Your choice: []
Parameters for the 'make' command?
Your choice: []
Parameters for the 'make install' command?
Your choice: []
Timeout for inactivity during Makefile.PL? [0]
Your ftp_proxy?
Your http_proxy?
Your no_proxy?
Select your continent (or several nearby
continents) []
> 5
Select your country (or several nearby countries) []
> 3
Select as many URLs as you like,
put them on one line, separated by blanks []
> 3 5 7 11 13
Enter another URL or RETURN to quit: []
Your favorite WAIT server?
[wait://ls6-www.informatik.uni-dortmund.de:1404]
cpan>

That last line is actually the cpan shell prompt. The next time you run cpan, it will go directly to the
cpan shell prompt.

102

The first thing you will probably want to do is make sure you have the latest and greatest cpan.pm
module with all the trimmings. At the cpan shell prompt, type the following command:

cpan> install Bundle::CPAN
cpan> reload cpan

You should then be able to install any perl module with a single command. If cpan encounters any
problems, it will not install the module. If you wish to force the install, then use the "force" command.

cpan> force install Tk

Or you can get the tarball from www.cpan.org and install it manually.

15.3 Plain Old Documentation (POD) and perldoc
Modules on CPAN are generally documented with POD. POD embeds documentation directly into the
perl code. You do not need to know POD to write perl code. But you will want to know how to read
POD from all the modules you download from CPAN. Perl comes with a builtin utility called "perldoc"
which allows you to look up perl documentation in POD format.

> perldoc perldoc
> perldoc NEXT
> perldoc Data::Dumper

15.4 Creating Modules for CPAN with h2xs
If you wish to create a module that you intend to upload to CPAN, perl comes with a utility "h2xs"
which, among other things, will create a minimal set of all the files needed. This first command will
create a directory called "Animal" and populate it with all the files you need. The remainder of the
commands show you what steps you need to take to create a .tar.gz tarball that can be uploaded to
CPAN and downloaded by others using the cpan.pm module.

> h2xs -X -n Animal # create the structure
> cd Animal/lib # go into module dir
> edit Animal.pm # edit module
> cd ../t # go into test dir
> edit Animal.t # edit test
> cd .. # go to make directory
> perl Makefile.PL # create make file
> make # run make
> make test # run the test in t/
> make dist # create a .tar.gz file

103

16 The Next Level
You now know the fundamentals of procedural perl and object oriented perl. From this point forward,
any new topics may include a discussion of a perl builtin feature or something available from CPAN.
Some of perl's builtin features are somewhat limited and a CPAN module greatly enhances and/or
simplifies its usage.

17 Command Line Arguments
Scripts are often controlled by the arguments passed into it via the command line when the script is
executed. Arguments might be a switch, such as "-h" to get help.

> myscript.pl -h

A "-v" switch might turn verboseness on.

> anotherscript.pl -v

Switches might by followed by an argument associated with the switch. A "-in" switch might be
followed by a filename to be used as input.

> thatscript.pl -in data.txt

An argument could indicate to stop processing the remaining arguments and to process them at a later
point in the script. The "--" argument could be used to indicate that arguments before it are to be used
as perl arguments and that arguments after it are to be passed directly to a compiler program that the
script will call.

> mytest.pl -in test42.txt -- +define+FAST

More advanced arguments:

Single character switches can be lumped together. Instead of "-x -y -z", you could say "-xyz".

Options can be stored in a separate file. A file might contain a number of options always needed to do a
standard function, and using "-f optionfile.txt" would be easier than putting those options on the
command line each and every time that function is needed. This would allow a user to use the option
file and then add other options on the command line.

> thisscript.pl -f optionfile.txt -v

Options can have full and abbreviated versions to activate the same option.

The option "-verbose" can also work as "-v". Options operate independent of spacing.

-f=options.txt
-f = options.txt

104

17.1 @ARGV
Perl provides access to all the command line arguments via a global array @ARGV. The text on the
command line is broken up anywhere whitespace occurs, except for quoted strings.

#!/usr/bin/env perl
###filename:script.pl
use warnings; use strict; use Data::Dumper;
print Dumper \@ARGV;

> script.pl -v -f options.txt "hello world"
> $VAR1 = [
> '-v',
> '-f',
> 'options.txt',
> 'hello world'
>];

If you need to pass in a wild-card such as *.txt then you will need to put it in quotes or your operating
system will replace it with a list of files that match the wildcard pattern.

#!/usr/bin/env perl
###filename:script.pl
use warnings; use strict; use Data::Dumper;
print Dumper \@ARGV;

> ./test.pl *.pl
> $VAR1 = [
> 'script.pl',
> 'test.pl'
>];
> ./test.pl "*.pl"
> $VAR1 = [
> '*.pl'
>];

105

Simple processing of @ARGV would shift off the bottom argument, process it, and move on to the
next argument. The following example will handle simple command line arguments described above.

create a package variable for each option
our $fn;
our $debug=0;
create subroutines for options that do things
sub print_help {
 print "-d for debug\n-f for filename\n";
}
get the first/next argument and process it.
while(scalar(@ARGV)) {
 my $arg=shift(@ARGV);
 if($arg eq '-h') {print_help;}
 elsif($arg eq '-f') {$fn = shift(@ARGV);}
 elsif($arg eq '-d') {$debug=1;}
 else { die "unknown argument '$arg'"; }
}

Package (our) variables are used instead of lexical (my) variables because command line arguments
should be considered global and package variables are accessible everywhere. If you wrote a script that
used "-d" to turn on debug information, you would want this to turn on debugging in any separate
modules that you write, not just your script.pl script.

Package "main" is the default package and a good place to put command line argument related
variables. Outside of package main, code would check for $main::debug being true or false.

If you need to handle a few simple command line arguments in your script, then the above example of
processing @ARGV one at a time is probably sufficient. If you need to support more advanced
command line arguments, or a lot of simple ones, you should look at Getopt::Declare.

106

17.2 Getopt::Declare
The Getopt::Declare module allows for an easy way to define more complicated command line
arguments. The above example with -h,-f, and -d options could be written using Getopt::Declare like
this:

use Getopt::Declare;
our $fn='';
our $debug=0;
my $args = Getopt::Declare->new(q (
 -in <filename> Define input file
 {$main::fn=$filename;}
 -d Turn debugging On
 {$main::debug=1;}
 <unknown>
 { die "unknown arg '$unknown'\n"; }
));
print "Debug is '$debug'\n";
print "fn is '$fn'\n";

The text passed into Getopt::Declare is a multi-line quoted q() string. This string defines the arguments
that are acceptable. Notice that -h is not defined in the string. This is because Getopt::Declare
recognizes -h to print out help based on the declaration.

> script.pl -h
>Options:
> -in <filename> Define input file
> -d Turn debugging On

The argument declaration and the argument description is separated by one or more tabs in the string
passed into Getopt::Declare.

The <unknown> marker is used to define what action to take with unknown arguments, arguments that
are not defined in the declaration.

The text within the curly braces {$main::fn=$filename;} is treated as executable code and evaled if the
declared argument is encountered on the command line. Note that within the curly braces, the global
variables $fn and $debug are used with their full package name. Also, not that the starting curly brace
must begin on its own line separate from the argument declaration and description.

Getopt::Declare recognizes -v as a version command line argument. If -v is on the command line, it
will print out the version of the file based on $main::VERSION (if it exists) and the date the file was
saved.

If [undocumented] is contained anywhere in the command line argument description, then that
argument will not be listed in the help text, but will still be recognized if placed on the command line

107

(secret arguments)

A [ditto] flag in the description will use the same text description as the argument just before it, and
any action associated with it.

A short and long version of the same argument can be listed by placing the optional second half in
square brackets: -verb[ose] This will recognize -verb and -verbose as the same argument.

Normally, a declared argument will only be allowed to occur on the command line once. If the
argument can occur more than once, place [repeatable] in the description. Inside the curly braces,
calling finish() with a true value will cause the command line arguments to stop being processed at that
point.

17.2.1 Getopt::Declare Sophisticated Example
The example on the next page shows Getopt::Declare being used more to its potential.

1. Filenames to be handled by the script can be listed on the command line without any argument prefix
2. Verbosity can be turned on with -verbose. It can be turned off with -quiet.
3. An undocumented -Dump option turns on dumping.
4. Any options after a double dash (--) are left in @ARGV for later processing.
5. Additional arguments can be placed in an external file and loaded with -args filename.

The Error() subroutine will report the name of the file containing any error while processing the
arguments. Argument files can refer to other argument files, allowing nested argument files.

6. Any arguments that are not defined will generate an error.

108

advanced command line argument processing
use Getopt::Declare;
our $arg_file='Command Line';
our $VERSION=1.01; # -v will use this
our @files;
our $debug=0;
our $verbose=0;
our $dump=0;
sub Verbose {if($verbose){print $_[0];}}
sub Error {die"Error: ".($_[0])." from '$arg_file'\n";}
my $grammar = q(
 -args <input> Arg file [repeatable]
 { unless(-e $input)
 {main::Error("no file '$input'");}
 main::Verbose("Parsing '$input'\n");
 { local($main::arg_file);
 $main::arg_file = $input;
 $main::myparser->parse([$input]);
 }
 main::Verbose ("finished parsing '$input'\n");
 main::Verbose ("returning to '$main::arg_file'\n");
 }
 -d Turn debugging On
 {$main::debug=1;}
 -verb[ose] Turn verbose On
 {$main::verbose=1;}
 -quiet Turn verbose Off
 {$main::verbose=0;}
 --Dump [undocumented] Dump on
 {$main::dump=1;}
 -h Print Help
 {$main::myparser->usage;}
 -- Argument separator
 {finish(1);}
 <unknown> Filename [repeatable]
 { if($unknown!~m{^[-+]})
 {push(@main::files,$unknown);}
 else
 {main::Error("unknown arg '$unknown'");}
 }
);

our $myparser = new Getopt::Declare
($grammar,['-BUILD']);
$myparser->parse();

109

18 File Input and Output
Perl has a number of functions used for reading from and writing to files. All file IO revolves around
file handles.

18.1 open
To generate a filehandle and attach it to a specific file, use the open() function.

open(my $filehandle, 'filename.txt')
 or die "Could not open file";

If the first argument to open() is an undefined scalar, perl will create a filehandle and assign it to that
scalar. This is available in perl version 5.6 and later and is the preferred method for dealing with
filehandles.

The second argument to open() is the name of the file and an optional flag that indicates to open the file
as read, write, or append. The filename is a simple string, and the flag, if present, is the first character
of the string. The valid flags are defined as follows:

'<' Read. Do not create.
Do not clobber existing file. DEFAULT.
'>' Write. Create if non-existing.
Clobber if already exists.
'>>' Append. Create if non-existing.
Do not clobber existing file.

If no flag is specified, the file defaults to being opened for read.

18.2 close
Once open, you can close a filehandle by calling the close function and passing it the filehandle.

close($filehandle) or die "Could not close";

If the filehandle is stored in a scalar, and the scalar goes out of scope or is assigned undef, then perl
will automatically close the filehandle for you.

18.3 read
Once open, you can read from a filehandle a number of ways. The most common is to read the
filehandle a line at a time using the "angle" operator. The angle operator is the filehandle surrounded by
angle brackets. i.e. <$filehandle> When used as the boolean conditional controlling a while()
loop, the loop reads the filehandle a line at a time until the end of file is reached. Each pass through the
conditional test reads the next line from the file and places it in the $_ variable.

110

This script shows a cat -n style function.

open (my $fh, 'input.txt') or die "could not open";
my $num=0;
while(<$fh>) {
 $num++;
 my $line = $_;
 chomp($line);
 print "$num: $line\n";
}

The above example is useful if every line of the file contains the same kind of information, and you are
just going through each line and parsing it.

Another way to read from a filehandle is to assign the angle operator of the filehandle to a scalar. This
will read the next line from the filehandle. But it requires that you test the return value to make sure it
is defined, otherwise you hit the end of file.

defined(my $line = <$fh>) or die "premature eof";

To make a little more useful, you can wrap it up in a subroutine to hide the error checking. You can
then call the subroutine each time you want a line. This is useful if you are reading a file where every
line has a different meaning, and you need to read it in a certain order.

use Carp;
open (my $fh, 'input.txt');
sub nlin {
 defined(my $line =<$fh>) or croak "premature eof";
 chomp($line);
 return $line;
}
my $name=nlin;
my $addr=nlin;
my $age =nlin;
print "Name: $name, address: $addr, age: $age\n";

18.4 write
If the file is opened for write or append, you can write to the filehandle using the print function.

open (my $fh, '>output.txt');
print $fh "once\n";
print $fh "upon\n";
print $fh "a time\n";
close $fh;

111

18.5 File Tests
Perl can perform tests on a file to glean information about the file. All tests return a true (1) or false ("")
value about the file. All the tests have the following syntax:

-x FILE

The "x" is a single character indicating the test to perform. FILE is a filename (string) or filehandle.

Some common tests include:

-e file exists
-f file is a plain file
-d file is a directory
-l file is a symbolic link
-r file is readable
-w file is writable
-z file size is zero
-p file is a named pipe
-S file is a socket
-T file is a text file (perl's definition)

18.6 File Globbing
The glob() function takes a string expression and returns a list of files that match that expression using
shell style filename expansion and translation.

my @files = glob (STRING_EXPRESSION);

For example, if you wish to get a list of all the files that end with a .txt expression:

my @textfiles = glob ("*.txt");

This is also useful to translate Linux style "~" home directories to a usable file path. The "~" in Linux
is a shell feature that is translated to the user's real directory path under the hood. Perl's open() function
cannot open "~/list.txt" because "~" only means something to the shell. To translate to a real directory
path, use glob().

my $startup_file = glob('~/.cshrc');

112

18.7 File Tree Searching
For sophisticated searching, including searches down an entire directory structure, use the File::Find
module. It is included in perl 5.6.1.

use File::Find;
my $pwd=`pwd`;
chomp($pwd);
find(\&process,$pwd);
sub process { ... }

The process() subroutine is a subroutine that you define. The process() subroutine will be called on
every file and directory in $pwd and recursively into every subdirectory and file below.

The package variable $File::Find::name contains the name of the current file or directory. Your
process() subroutine can read this variable and perform whatever testing it wants on the fullname. If
you process() was called on a file and not just a directory, the path to the file is available in
$File::Find::dir and the name of the file is in $_. If your process() subroutine sets the package
variable $File::Find::prune to 1, then find() will not recurse any further into the current
directory.

This process() subroutine prints out all .txt files encountered and it avoids entering any CVS
directories.

sub process {
 my $fullname = $File::Find::name;
 if ($fullname =~ m{\.txt$})
 {print "found text file $fullname\n";}
 if((-d $fullname) and ($fullname=~m{CVS}))
 {$File::Find::prune=1; return;}
}

For more information: perldoc File::Find

113

19 Operating System Commands
Two ways to issue operating system commands within your perl script are the system function and the
backtick operator.

1.system("command string");
2.`command string`;

19.1 The system() function
If you want to execute some command and you do not care what the output looks like, you just want to
know if it worked, then you will likely want to use the system() function. The system() function
executes the command string in a shell and returns you the return code of the command. In Linux, a
return value of ZERO is usually good, a non-zero indicates some sort of error. So to use the system()
function and check the return value, you might do something like this:

my $cmd = "rm -f junk.txt";
system($cmd)==0 or die "Error: could not '$cmd'";

When you execute a command via the system() function, the output of the command goes to STDOUT,
which means the user will see the output scroll by on the screen, and then it is lost forever.

19.2 The Backtick Operator
If you want to capture the STDOUT of a operating system command, then you will want to use the
backtick operator. A simple example is the "finger" command on Linux. If you type:

linux> finger username

Linux will dump a bunch of text to STDOUT. If you call system() on the finger command, all this text
will go to STDOUT and will be seen by the user when they execute your script. If you want to capture
what goes to STDOUT and manipulate it within your script, use the backtick operator.

my $string_results = `finger username`;

The $string_results variable will contain all the text that would have gone to STDOUT. You can then
process this in your perl script like any other string.

19.3 Operating System Commands in a GUI
If your perl script is generating a GUI using the Tk package, there is a third way to run system
commands within your perl script, using the Tk::ExecuteCommand module. This is a very cool module
that allows you to run system commands in the background as a separate process from you main perl
script. The module provides the user with a "Go/Cancel" button and allows the user to cancel the
command in the middle of execution if it is taking too long.

We have not covered the GUI toolkit for perl (Tk), but if you are doing system commands in perl and
you are using Tk, you should look into Tk::ExecuteCommand.

114

20 Regular Expressions
Regular expressions are the text processing workhorse of perl. With regular expressions, you can
search strings for patterns, find out what matched the patterns, and substitute the matched patterns with
new strings.

There are three different regular expression operators in perl:
1.match m{PATTERN}
2.substitute s{OLDPATTERN}{NEWPATTERN}
3.transliterate tr{OLD_CHAR_SET}{NEW_CHAR_SET}

Perl allows any delimiter in these operators, such as {} or () or // or ## or just about any character you
wish to use. The most common delimiter used is probably the m// and s/// delimiters, but I prefer to use
m{} and s{}{} because they are clearer for me. There are two ways to "bind" these operators to a string
expression:

1.=~ pattern does match string expression
2.!~ pattern does NOT match string expression

Binding can be thought of as "Object Oriented Programming" for regular expressions. Generic OOP
structure can be represented as

$subject -> verb (adjectives, adverbs, etc);

Binding in Regular Expressions can be looked at in a similar fashion:

$string =~ verb (pattern);

where "verb" is limited to 'm' for match, 's' for substitution, and 'tr' for translate. You may see perl code
that simply looks like this:

/patt/;

This is functionally equivalent to this:

$_ =~ m/patt/;

115

Here are some examples:

spam filter
my $email = "This is a great Free Offer\n";
if($email =~ m{Free Offer})
 {$email="*deleted spam*\n"; }
print "$email\n";

upgrade my car
my $car = "my car is a toyota\n";
$car =~ s{toyota}{jaguar};
print "$car\n";

simple encryption, Caesar cypher
my $love_letter = "How I love thee.\n";
$love_letter =~ tr{A-Za-z}{N-ZA-Mn-za-m};
print "encrypted: $love_letter";

$love_letter =~ tr{A-Za-z}{N-ZA-Mn-za-m};
print "decrypted: $love_letter\n";

> *deleted spam*
> my car is a jaguar
> encrypted: Ubj V ybir gurr.
> decrypted: How I love thee.

The above examples all look for fixed patterns within the string. Regular expressions also allow you to
look for patterns with different types of "wildcards".

20.1 Variable Interpolation
The braces that surround the pattern act as double-quote marks, subjecting the pattern to one pass of
variable interpolation as if the pattern were contained in double-quotes. This allows the pattern to be
contained within variables and interpolated during the regular expression.

my $actual = "Toyota";
my $wanted = "Jaguar";
my $car = "My car is a Toyota\n";
$car =~ s{$actual}{$wanted};
print $car;

> My car is a Jaguar

116

20.2 Wildcard Example
In the example below, we process an array of lines, each containing the pattern {filename: } followed
by one or more non-whitespace characters forming the actual filename. Each line also contains the
pattern {size: } followed by one or more digits that indicate the actual size of that file.

my @lines = split "\n", <<"MARKER"
filename: output.txt size: 1024
filename: input.dat size: 512
filename: address.db size: 1048576
MARKER
;
foreach my $line (@lines) {
 ####################################
 # \S is a wildcard meaning
 # "anything that is not white-space".
 # the "+" means "one or more"
 ####################################
 if($line =~ m{filename: (\S+)}) {
 my $name = $1;
 ###########################
 # \d is a wildcard meaning
 # "any digit, 0-9".
 ###########################
 $line =~ m{size: (\d+)};
 my $size = $1;
 print "$name,$size\n";
 }
}
> output.txt,1024
> input.dat,512
> address.db,1048576

20.3 Defining a Pattern
A pattern can be a literal pattern such as {Free Offer}. It can contain wildcards such as {\d}. It
can also contain metacharacters such as the parenthesis. Notice in the above example, the parenthesis
were in the pattern but did not occur in the string, yet the pattern matched.

117

20.4 Metacharacters
Metacharacters do not get interpreted as literal characters. Instead they tell perl to interpret the
metacharacter (and sometimes the characters around metacharacter) in a different way. The following
are metacharacters in perl regular expression patterns:

\ | () [] { } ^ $ * + ? .

\ (backslash) if next character combined with this backslash forms a character class
shortcut, then match that character class. If not a shortcut, then simply treat next
character as a non-metacharacter.

| alternation: (patt1 | patt2) means (patt1 OR patt2)
() grouping (clustering) and capturing

(?:) grouping (clustering) only. no capturing. (somewhat faster)
. match any single character (usually not "\n")
[] define a character class, match any single character in class
* (quantifier): match previous item zero or more times
+ (quantifier): match previous item one or more times
? (quantifier): match previous item zero or one time
{ } (quantifier): match previous item a number of times in given range
^ (position marker): beginning of string (or possibly after "\n")
$ (position marker): end of string (or possibly before "\n")

118

Examples below. Change the value assigned to $str and re-run the script. Experiment with what
matches and what does not match the different regular expression patterns.

my $str = "Dear sir, hello and goodday! "
." dogs and cats and sssnakes put me to sleep."
." zzzz. Hummingbirds are ffffast. "
." Sincerely, John";

| alternation
match "hello" or "goodbye"
if($str =~ m{hello|goodbye}){warn "alt";}

() grouping and capturing
match 'goodday' or 'goodbye'
if($str =~ m{(good(day|bye))})

{warn "group matched, captured '$1'";}

. any single character
match 'cat' 'cbt' 'cct' 'c%t' 'c+t' 'c?t' ...
if($str =~ m{c.t}){warn "period";}

[] define a character class: 'a' or 'o' or 'u'
match 'cat' 'cot' 'cut'
if($str =~ m{c[aou]t}){warn "class";}

* quantifier, match previous item zero or more
match '' or 'z' or 'zz' or 'zzz' or 'zzzzzzzz'
if($str =~ m{z*}){warn "asterisk";}

+ quantifier, match previous item one or more
match 'snake' 'ssnake' 'sssssssnake'
if($str =~ m{s+nake}){warn "plus sign";}

? quantifier, previous item is optional
match only 'dog' and 'dogs'
if($str =~ m{dogs?}){warn "question";}

{} quantifier, match previous, 3 <= qty <= 5
match only 'fffast', 'ffffast', and 'fffffast'
if($str =~ m{f{3,5}ast}){warn "curly brace";}

^ position marker, matches beginning of string
match 'Dear' only if it occurs at start of string
if($str =~ m{^Dear}){warn "caret";}

$ position marker, matches end of string
match 'John' only if it occurs at end of string
if($str =~ m{John$}){warn "dollar";}

> alt at ...
> group matched, captured 'goodday' at ...
> period at ...
> class at ...
> asterisk at ...
> plus sign at ...
> question at ...

119

> curly brace at ...
> caret at ...
> dollar at ...

20.5 Capturing and Clustering Parenthesis
Normal parentheses will both cluster and capture the pattern they contain. Clustering affects the order
of evaluation similar to the way parentheses affect the order of evaluation within a mathematical
expression. Normally, multiplication has a higher precedence than addition. The expression "2 + 3 * 4"
does the multiplication first and then the addition, yielding the result of "14". The expression "(2 + 3) *
4" forces the addition to occur first, yielding the result of "20".

Clustering parentheses work in the same fashion. The pattern {cats?} will apply the "?" quantifier to
the letter "s", matching either "cat" or "cats". The pattern {(cats)?} will apply the "?" quantifier to the
entire pattern within the parentheses, matching "cats" or null string.

20.5.1 $1, $2, $3, etc Capturing parentheses
Clustering parentheses will also Capture the part of the string that matched the pattern within
parentheses. The captured values are accessible through some "magical" variables called $1, $2, $3, ...
Each left parenthesis increments the number used to access the captured string. The left parenthesis are
counted from left to right as they occur within the pattern, starting at 1.

my $test="Firstname: John Lastname: Smith";
##
$1 $2
$test=~m{Firstname: (\w+) Lastname: (\w+)};
my $first = $1;
my $last = $2;
print "Hello, $first $last\n";

> Hello, John Smith

Because capturing takes a little extra time to store the captured result into the $1, $2, … variables,
sometimes you just want to cluster without the overhead of capturing. In the below example, we want
to cluster "day|bye" so that the alternation symbol "|" will go with "day" or "bye". Without the
clustering parenthesis, the pattern would match "goodday" or "bye", rather than "goodday" or
"goodbye". The pattern contains capturing parens around the entire pattern, so we do not need to
capture the "day|bye" part of the pattern, therefore we use cluster-only parentheses.

if($str =~ m{(good(?:day|bye))})
{warn "group matched, captured '$1'";}

120

Cluster-only parenthesis don't capture the enclosed pattern, and they don't count when determining
which magic variable, $1, $2, $3 ..., will contain the values from the
capturing parentheses.

my $test = 'goodday John';
##
$1 $2
if($test =~ m{(good(?:day|bye)) (\w+)})

{ print "You said $1 to $2\n"; }

> You said goodday to John

20.5.2 Capturing parentheses not capturing
If a regular expression containing capturing parentheses does not match the string, the magic variables
$1, $2, $3, etc will retain whatever PREVIOUS value they had from any PREVIOUS regular
expression. This means that you MUST check to make sure the regular expression matches BEFORE
you use the $1, $2, $3, etc variables.

In the example below, the second regular expression does not match, therefore $1 retains its old value
of 'be'. Instead of printing out something like "Name is Horatio" or "Name is" and failing on an
undefined value, perl instead keeps the old value for $1 and prints "Name is 'be'", instead.

my $string1 = 'To be, or not to be';
$string1 =~ m{not to (\w+)}; # matches, $1='be'
warn "The question is to $1";

my $string2 = 'that is the question';
$string2 =~ m{I knew him once, (\w+)}; # no match
warn "Name is '$1'";
no match, so $1 retains its old value 'be'

> The question is to be at ./script.pl line 7.
> Name is 'be' at ./script.pl line 11.

20.6 Character Classes
The "." metacharacter will match any single character. This is equivalent to a character class that
includes every possible character. You can easily define smaller character classes of your own using
the square brackets []. Whatever characters are listed within the square brackets are part of that
character class. Perl will then match any one character within that class.

[aeiouAEIOU] any vowel
[0123456789] any digit

121

20.6.1 Metacharacters Within Character Classes
Within the square brackets used to define a character class, all previously defined metacharacters cease
to act as metacharacters and are interpreted as simple literal characters. Characters classes have their
own special metacharacters.

\ (backslash) demeta the next character
- (hyphen) Indicates a consecutive character range, inclusively.

[a-f] indicates the letters a,b,c,d,e,f.
Character ranges are based off of ASCII numeric values.

^ If it is the first character of the class, then this indicates the class
is any character EXCEPT the ones in the square brackets.
Warning: [^aeiou] means anything but a lower case vowel. This
is not the same as "any consonant". The class [^aeiou] will
match punctuation, numbers, and unicode characters.

20.7 Shortcut Character Classes
Perl has shortcut character classes for some more common classes.

shortcut class description
\d [0-9] any digit

\D [^0-9] any NON-digit
\s [\t\n\r\f] any whitespace

\S [^ \t\n\r\f] any NON-whitespace
\w [a-zA-Z0-9_] any word character (valid perl identifier)

\W [^a-zA-Z0-9_] any NON-word character

122

20.8 Greedy (Maximal) Quantifiers
Quantifiers are used within regular expressions to indicate how many times the previous item occurs
within the pattern. By default, quantifiers are "greedy" or "maximal", meaning that they will match as
many characters as possible and still be true.

* match zero or more times (match as much as possible)
+ match one or more times (match as much as possible)
? match zero or one times (match as much as possible)
{count} match exactly "count" times
{min, } match at least "min" times (match as much as possible)
{min,max} match at least "min" and at most "max" times

(match as much as possible)

20.9 Thrifty (Minimal) Quantifiers
Placing a "?" after a quantifier disables greediness, making them "non-greedy", "thrifty", or "minimal"
quantifiers. Minimal quantifiers match as few characters as possible and still be true.

*? match zero or more times
(match as little as possible and still be true)

+? match one or more times
(match as little as possible and still be true)

{min,}? match at least min times
(match as little as possible and still be true)

{min, max}? match at least "min" and at most "max" times
(match as little as possible and still be true)

This example shows the difference between minimal and maximal quantifiers.

my $string = "12340000";
if($string =~ m{^(\d+)0+$})

{ print "greedy '$1'\n"; }
if($string =~ m{^(\d+?)0+$})

{ print "thrifty '$1'\n"; }

> greedy '1234000'
> thrifty '1234'

123

20.10 Position Assertions / Position Anchors
Inside a regular expression pattern, some symbols do not translate into a character or character class.
Instead, they translate into a "position" within the string. If a position anchor occurs within a pattern,
the pattern before and after that anchor must occur within a certain position within the string.

^ Matches the beginning of the string.
If the /m (multiline) modifier is present, matches "\n" also.

$ Matches the end of the string.
If the /m (multiline) modifier is present, matches "\n" also.

\A Match the beginning of string only. Not affected by /m modifier.
\z Match the end of string only. Not affected by /m modifier.
\Z Matches the end of the string only, but will chomp() a "\n" if that

was the last character in string.
\b word "b"oundary

A word boundary occurs in four places.
1) at a transition from a \w character to a \W character
2) at a transition from a \W character to a \w character
3) at the beginning of the string
4) at the end of the string

\B NOT \b
\G usually used with /g modifier (probably want /c modifier too).

Indicates the position after the character of the last pattern match
performed on the string. If this is the first regular expression begin
performed on the string then \G will match the beginning of the
string. Use the pos() function to get and set the current \G position
within the string.

20.10.1 The \b Anchor
Use the \b anchor when you want to match a whole word pattern but not part of a word. This example
matches "jump" but not "jumprope":

my $test1='He can jump very high.';
if($test1=~m{\bjump\b})

{ print "test1 matches\n"; }

my $test2='Pick up that jumprope.';
unless($test2=~m{\bjump\b})

{ print "test2 does not match\n"; }

> test1 matches
> test2 does not match

124

20.10.2 The \G Anchor
The \G anchor is a sophisticated anchor used to perform a progression of many regular expression
pattern matches on the same string. The \G anchor represents the position within the string where the
previous regular expression finished. The first time a regular expression is performed on a string, the \G
anchor represents the beginning of the string.

The location of the \G anchor within a string can be determined by calling the pos() function on the
string. The pos() function will return the character index in the string (index zero is to the left of the
first character in the string) representing the location of the \G anchor. Assigning to pos($str) will
change the position of the \G anchor for that string.

The \G anchor is usually used with the "cg" modifiers. The "cg" modifiers tell perl to NOT reset the \G
anchor to zero if the regular expression fails to match. This will allow a series of regular expressions to
operate on a string, using the \G anchor to indicate the location where the previous regular expression
finished. Without the "cg" modifiers, the first regular expression that fails to match will reset the \G
anchor back to zero.

125

The example below uses the \G anchor to extract bits of information from a single string. After every
regular expression, the script prints the pos() value of the string. Notice how the pos() value keeps
increasing.

my $str = "Firstname: John Lastname: Smith
Bookcollection: Programming Perl, Perl Cookbook,
Impatient Perl";

if($str=~m{\GFirstname: (\w+) }cg) {
my $first = $1;
print "pos is ".pos($str)."\n";

}

if($str=~m{\GLastname: (\w+) }cg) {
my $last = $1;
print "pos is ".pos($str)."\n";

}

$str=~m{\GBookcollection: }cg;

while($str=~m{\G\s*([^,]+),?}cg) {
print "book is '$1'\n";
print "pos is ".pos($str)."\n";

}

> pos is 16
> pos is 32
> book is 'Programming Perl'
> pos is 65
> book is 'Perl Cookbook'
> pos is 80
> book is 'Impatient Perl'
> pos is 95

Another way to code the above script is to use substitution regular expressions and substitute each
matched part with empty strings. The problem is that a substitution creates a new string and copies the
remaining characters to that string, resulting in a much slower script. In the above example, the speed
difference would not be noticeable to the user, but if you have a script that is parsing through a lot of
text, the difference can be quite significant.

126

20.11 Modifiers
Regular expressions can take optional modifiers that tell perl additional information about how to
interpret the regular expression. Modifiers are placed after the regular expression, outside any curly
braces.

$str =~ m{pattern}modifiers;
$str =~ s{oldpatt}{newpatt}modifiers;
$str =~ tr{oldset}{newset}modifiers;

20.11.1 Global Modifiers
The following modifiers can be used with m{}, s{}{}, or tr{}{}.

i case Insensitive, m{cat}i matches cat, Cat, CaT, CAt, CAT, etc
x ignore spaces and tabs and carriage returns in pattern. This

allows the pattern to be spread out over multiple lines and for
regular perl comments to be inserted within the pattern but be
ignored by the regular expression engine.

s treat string as a Single line.
"." will match "\n" within the string.
^ and $ position anchors will only match literal beginning and
end of string.

m treat string as Multiple lines. (DEFAULT)
"." will NOT match "\n"
^ and $ position anchors will match literal beginning and end of
string and also "\n" characters within the string.
^ and $ indicate start/end of "line" instead of start/end of string.
^ matches after "\n"
$ matches before "\n"

o compile the pattern Once. possible speed improvement.

20.11.2 The m And s Modifiers
The default behavior of perl regular expressions is "m", treating strings as a multiple lines. If neither a
"m" or "s" modifier is used on a regular expression, perl will default to "m" behavior.

127

If the "m" modifier is used, then the "^" anchor will match the beginning of the string or "\n"
characters, the "$" anchor will match the end of the string or any "\n" characters, and the "." character
set will match any character EXCEPT "\n". If a string contains multiple lines separated by "\n", then
the default behavior (the "m" behavior) is to treat the string as multiple lines, using "^" and "$" to
indicate start and end of lines.

If the "s" modifier is used, then the "^" anchor will only match the literal beginning of the string, the
"$" anchor will only match the literal end of string, and the "." class will match any character including
"\n". With the "s" modifier, even if the string is multiple lines with embedded "\n" characters, the "s"
modifier forces perl to treat it as a single line.

This example shows the exact same pattern bound to the exact same string. The only difference is the
modifier used on the regular expression. Notice in the "s" version, the captured string includes the
newline "\n" characters which shows up in the printed output. The single line version prints out the
captured pattern across three different lines.

my $string = "Library: Programming Perl \n"
."Perl Cookbook\n"
."Impatient Perl";

if($string =~ m{Library: (.*)})
{ print "default is '$1'\n"; }

if($string =~ m{Library: (.*)}m)
{ print "multiline is '$1'\n"; }

if($string =~ m{Library: (.*)}s)
{ print "singleline is '$1'\n"; }

> default is 'Programming Perl '
> multiline is 'Programming Perl '
> singleline is 'Programming Perl
> Perl Cookbook
> Impatient Perl'

128

20.11.3 The x Modifier
The x modifier allows a complex regular expression pattern to be spread out over multiple lines, with
comments, for easier reading. Most whitespace within a pattern with the x modifier is ignored. The
following pattern is looking for a number that follows scientific notation. The pattern is spread out over
multiple lines with comments to support maintainability.

my $string = '- 134.23423 e -12';
if($string =~ m
{
 ^ \s* ([-+]?) # positive or negative or optional
 \s* (\d+) # integer portion
 (\. \d+)? # fractional is optional
 (\s* e \s* [+-]? \d+)? # exponent is optional
}x) {

my $sign = $1 || '';
my $integer = $2 || '';
my $fraction = $3 || '';
my $exponent = $4 || '';

print "sign is '$sign'\n";
print "integer is '$integer'\n";
print "fraction is '$fraction'\n";
print "exponent is '$exponent'\n";

}

> sign is '-'
> integer is '134'
> fraction is '.23423'
> exponent is ' e -12'

A couple of notes for the above example: The x modifier strips out all spaces, tabs, and carriage returns
in the pattern. If the pattern expects whitespace in the string, it must be explicitly stated using \s or \t
or \n or some similar character class. Also, it's always a good idea to anchor your regular expression
somewhere in your string, with "^" or "$" or "\G". The double-pipe expressions guarantee that the
variables are assigned to whatever the pattern matched or empty string if no match occurred. Without
them, an unmatched pattern match will yield an "undef" in the $1 (or $2 or $3) variable associated with
the match.

129

20.12 Modifiers For m{} Operator
The following modifiers apply to the m{pattern} operator only:

g Globally find all matchs. Without this modifier, m{} will find
the first occurrence of the pattern.

cg Continue search after Global search fails. This maintains the \G
marker at its last matched position. Without this modifier, the \G
marker is reset to zero if the pattern does not match.

20.13 Modifiers for s{}{} Operator
The following modifiers apply to the s{oldpatt}{newpatt} operator only.

g Globally replace all occurrences of oldpatt with newpatt
e interpret newpatt as a perl-based string Expression.

the result of the expression becomes the replacement string.

20.14 Modifiers for tr{}{} Operator
The following modifiers apply to the tr{oldset}{newset} operator only.

c Complement the searchlist
d Delete found but unreplaced characters
s Squash duplicate replaced characters

20.15 The qr{} function
The qr{} function takes a string and interprets it as a regular expression, returning a value that can be
stored in a scalar for pattern matching at a later time.

my $number = qr{[+-]?\s*\d+(?:\.\d+)?\s*(?:e\s*[+-]?\s*\d+)?};

20.16 Common Patterns
Some simple and common regular expression patterns are shown here:

$str =~ s{\s}{}g; # remove all whitespace
$str =~ s{#.*}{}; # remove perl comments
next if($str =~ m{^\s*$});# next if only whitespace

For common but more complicated regular expressions, check out the Regexp::Common module on
CPAN.

130

20.17 Regexp::Common
The Regexp::Common module contains many common, but fairly complicated, regular expression
patterns (balanced parentheses and brackets, delimited text with escapes, integers and floating point
numbers of different bases, email addresses, and others). If you are doing some complicated pattern
matching, it might be worth a moment to check out Regexp::Common and see if someone already did
the work to match the pattern you need.

cpan> install Regexp::Common

Once Regexp::Common is installed, perl scripts that use it will have a "magic" hash called %RE
imported into their namespace. The keys to this hash are human understandable names, the data in the
hash are the patterns to use within regular expressions.

Here is how to find out what the floating point number pattern looks like in Regexp::Common:

use Regexp::Common;

my $patt = $RE{num}{real};

print "$patt\n";

> (?:(?i)(?:[+-]?)(?:(?=[0123456789]|[.])(?:
[0123456789]*)(?:(?:[.])(?:[0123456789]{0,}))?)(?:
(?:[E])(?:(?:[+-]?)(?:[0123456789]+))|))

As complicated as this is, it is a lot easier to reuse someone else's code than to try and reinvent your
own, faulty, lopsided, wheel.

The hash lookup can be used directly within your regular expression:

use Regexp::Common;
my $str = "this is -12.423E-42 the number";

$str =~ m{($RE{num}{real})};

print "match is '$1'\n";

> match is '-12.423E-42'

131

21 Parsing with Parse::RecDescent
Perl's regular expression patterns are sufficient for many situations, such as extracting information out
of a tab separated database that is organized by lastname, firstname, dateof-birth, address, city, state,
ZIP, phonenumber. The data is always in a fixed location, and a regular expression can be used to
perform searches within that data.

If the data being parsed is not quite so rigid in its definition, regular expressions may become a
cumbersome means to extract the desired data. Instead, the Parse::RecDescent module may prove
useful in that it allows whole gramatical rules to be defined, and the module parses the data according
to those rules.

cpan> install Parse::RecDescent

Parse::RecDescent describes itself as a module that incrementally generates top-down recursive-
descent text parsers from simple yacc-like grammar specifications. In simpler terms, Parse::RecDescent
uses regular expression styled patterns to define grammar rules, and these rules can be combined fairly
easily to create complex rules.

132

Here is a quick example from perldoc Parse::RecDescent

use Parse::RecDescent;
print "try typing these lines:\n";
print "He's dead, Jim!\n";
print "Dammit, Jim, I'm a doctor, not a
magician!\n";
print "press <CTL><D> when finished\n";

my $grammar = q{
McCoy:
 curse "," name ", I'm a doctor, not a" job "!"
 { print "Just do what you can, Bones.\n"; }
 | pronoun "dead," name "!"
 { print "Shut up, Bones.\n";}
 | <error>

curse: 'Dammit' | 'Goddammit'

name: 'Jim' | 'Spock' | 'Scotty'

job: 'magician' | 'miracle worker' | 'perl hacker'

pronoun: "He's" | "She's" | "It's" | "They're"

};

my $parse = new Parse::RecDescent($grammar);
print "> ";

while(<>) {
$parse->McCoy($_);
print "> ";

}

> try typing these lines:
> He's dead, Jim!
> Dammit, Jim, I'm a doctor, not a magician!
> press <CTL><D> when finished
> > Dammit, Jim, I'm a doctor, not a magician!
> Just do what you can, Bones.
> > He's dead, Jim!
> Shut up, Bones.
> > You green blooded Vulcan!
>
> ERROR (line 1): Invalid McCoy:
> Was expecting curse, or pronoun

133

Parse::RecDescent is not the solution for every pattern matching problem. Parse::RecDescent is slower
than simple regular expressions. Since it recursively descends through its set of rules, the more rules,
the longer it takes to run. Parse::RecDescent currently must read in the entire text being parsed, which
can be a problem if you are parsing a gigabyte-sized file. And Parse::RecDescent has an additional
learning curve above and beyond perl's regular expressions. Parse::RecDescent uses perl"s regular
expression patterns in its pattern matching, so you need to learn basic regular expression patterns
before you use Parse::RecDescent.

If the data you are mining is fairly complex, and normal regular expressions are becoming difficult to
manage, then Parse::RecDescent would be the next logical module to look at.

134

22 Perl, GUI, and Tk
So far, all the examples have had a command line interface. User input and output occurred through the
same command line used to execute the perl script itself. Perl has a Graphical User Interface (GUI)
toolkit module available on CPAN called Tk.

cpan> install Tk

The Tk module is a GUI toolkit that contains a plethora of buttons and labels and entry items and other
widgets needed to create a graphical user interface to your scripts. Once installed, the Tk module has a
widget demonstration program that can be run from the command line to see what widgets are available
and what they look like. At the command line, type "widget" to run the demonstration program.

> widget

Here is a simple "hello world" style program using Tk:

use Tk;
my $top=new MainWindow;

$top->Button (
-text=>"Hello",
-command=>sub{print "Hi\n";}

)->grid(-row=>1,-column=>1);

MainLoop;

When the above example is executed, a small GUI will popup on the screen (the MainWindow item)
with a button (the $top->Button call) labeled "Hello" (the -text option). When the mouse left-clicks on
the button, the word "Hi" is printed to the command line (the -command option). The ->grid method
invokes the geometry manager on the widget and places it somewhere in the GUI (without geometry
management, the widget will not show up in the GUI). The MainLoop is a subroutine call that invokes
the event loop, drawing the GUI, responding to button clicks, etc.

Several large books have been written about the Tk GUI toolkit for perl. And it would be impossible to
give any decent introduction to this module in a page or two. If you plan on creating GUI's in your
scripts, I recommend the "Mastering Perl/Tk" book.

135

23 GNU Free Documentation License
GNU Free Documentation License
 Version 1.3, 3 November 2008

 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
 <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall

136

directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a

137

specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated

138

location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has fewer than five),
 unless they release you from this requirement.
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add
 to it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section Entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
 Preserve the Title of the section, and preserve in the section all
 the substance and tone of each of the contributor acknowledgements

139

 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements"
 or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"

140

in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

141

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

142

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

143

Alphabetical Index
abs..16
AND...26
anonymous...51
anonymous subroutine...70
anonymous subroutines..69
argument passing..70
array...32

@...32
$...32

Autovivification...54
backtick..114
base conversion..21
BEGIN...76
bless...83p.
bless / constructors...98
bless REFERENCE, STRING...83
blessed invocant...89
boolean...23
caller...74
can..88
Capturing and Clustering Parenthesis..120
Character Classes...121
CHECK..76
chomp...13
class..94
clone...56
close...110
closures...66
cmp...25
code reference..71
code reuse...78
command line...

Getopt::Declare...107
@ARGV..105

Command Line Arguments..104
comparison ..25
comparison operator...25
compiling...76
complex data structures..53
concatenation...13
conditional operator...28
continue..59
control flow..59

144

cos..17
CPAN...100
CPAN, The Perl Module..100
CPAN, The Web Site...100
Creating Modules...103
Data Persistence...56
dclone...56
deep clone..56
defined..22
delete..42
dereference...50
dereferencing code references..71
double quote...12
e..18
each..43
else...59
elsif...59
END...76
eq..25
equal to...25
execution timeline..82
exists...41
exp..18
exponentiation..17
false...23p.
file glob..112
File Input and Output...110
File IO..

close...110
open...110
read..110
write...111

File Test..
-d..112
-e..112
-f..112
-l...112
-p..112
-r..112
-S...112
-T...112
-w...112
-z..112

File Tests..112
File::Find..113
for...59
foreach..36, 59

145

garbage collection...64p.
ge..25
Getopt::Declare..107
glob...112
Global Modifiers..127
Global Modifiers (regular expressions)...127
greater than...25
greater than or equal to...25
Greedy (Maximal) Quantifiers...123
gt...25
GUI and Perl::Tk..135
h2xs..103
hash..39

$...40
here document..15
hex..21
hexadecimal...16
if...59
imaginary numbers...17
import..79pp.
Inheritance..86, 99
INIT..76
int...16
interpreting...76
INVOCANT -> METHOD..85
INVOCANT->can(METHODNAME)..88
INVOCANT->isa(BASEPACKAGE)...88
isa...88
join...14
keys..42
label..60
last..60
le...25
length..13
less than..25
less than or equal to ...25
lexical scope...63
lexical variable...63
list...47
literal..

binary...16
hexadecimal...16
octal...16
string..12

local..68
log...18
log_x_base_b...18

146

logical operators...26
lt...25
m/patt/..115
Math::Complex..17
Math::Trig..17
Metacharacters Within Character Classes..122
method calls...85
Methods..99
Modules..98
multidimensional array..55
multiline string...15
named referent..50
named subroutine...69
named subroutines..69
namespace..61
natural logarithms..18
ne..25
next...60
NOT...26
not equal to...25
nstore..56
numbers..16
numeric...

literal..16
rounding...17

numify..20
Object Destruction...97
object oriented perl...83
Object Oriented Perl...90
Object Oriented Review...98
oct...21
octal..16
open..110
Operating System Commands..114

backtick...114
system..114
Tk::ExecuteCommand...114
`..114

OR..26
our..62
Overriding Methods ..99
package...61
package main..61
package qualified variable ...61
Parse::RecDescent..132
perl modules...78
PERL5LIB...80

147

perldoc..103
Plain Old Documentation...103
POD..103
Polymorphism..94
pop..34
Position Assertions / Position Anchors..124
push..34
quote...

doube...12
single...12

qw...12, 15
rand...18
random numbers...18
read...110
redo...60
ref...57, 84
reference...49
referent...49, 84
Regexp::Common..131
Regular Expressions...115

a character class...118
alternation..118
capturing..118
Capturing and Clustering Parenthesis...120
Character Classes..121
clustering...118
Defining a Pattern..117
Global Modifiers...127
Greedy (Maximal) Quantifiers..123
grouping...118
m/patt/..115
Metacharacters...118
Position Assertions / Position Anchors...124
quantifier...118
Shortcut Character Classes..122
Thrifty (Minimal) Quantifiers...123
Variable Interpolation..116
Wildcard Example...117
!~...115
=~...115
$1, $2, $3...120

repetition..13
require...79p.
retrieve...56
return..73
reuse...78
reverse..38

148

rounding...17
scalar..11, 33

Autovivify...12
numbers...16
string..12
$...11

shift...35
Shortcut Character Classes...122
sin...17
single quote..12
sort..37
spaceship operator..25
splice..39
split...14
sprintf...19
sqrt..17
srand...18
Storable.pm..56
string...

double quote..12
single quote..12

stringify..19
subroutine...

argument passing...70
subroutine closures...66
subroutine return value...73
subroutines...69

anonymous...69
closures..66
named..69

substr..13
SUPER...99
SUPER::...95
system...114
ternary operator..28
Thrifty (Minimal) Quantifiers..123
Tk::ExecuteCommand...114
trigonometry...17
trinary operator...28
true..23p.
undefined..22
unless..59
unshift...35
use..78
use base MODULENAME..87
use lib...80
use Module...98

149

use MODULENAME..79
values...43
wantarray..75
while...59
write...111
xor..26
XOR...26
-d..112
-e...112
-f...112
-l...112
-p..112
-r...112
-S..112
-T..112
-w...112
-x..112
-z...112
:...28
!..26
!=..25
!~..115
?..28
'...12
"..12
[]...121
@..32
@_..71
@ARGV...105
@INC...79
@ISA..87
**..17
\b...124
\G..125
&&...26
<...25
<<...15
<=...25
<=>...25
<$fh>..111
==...25
=~...115
>...25
>=...25
||..26
$..11

scalar..11

150

$1, $2, $3..120

The End.

151

