Regular Expressions

Pattern Matching Operators

Match - m//

Syntax: m/pattern/

If a match is found for the pattern within a referenced string (default $_), the expression returns true.
(Note: If the delimiters // are used, the preceding m is not required.)

Modifiers: g,i,m o0, s, x

Substitution - s///

Syntax: s/patternl/pattern2/

If a match is found for patterni within a referenced string (default $_), the relevant substring is
replaced by the contents of pattern2, and the expression returns true.

Modifiers: e,g,1i,m 0, s, X

Transliteration - tr/// ory///

Syntax: tr/patternl/pattern2/
y/patternl/pattern2/

If any characters in patternl match those within a referenced string (default $_), instances of each are
replaced by the corresponding character in pattern2, and the expression returns the number of
characters replaced. (Note: If one character occurs several times within patterni, only the first will be
used - for example, tr/abbc/xyz/ is equivalent to tr/abc/xyz/.)

Modifiers: c,d, s

Appendix A

Delimiters
Patterns may be delimited by character pairs <>, (), [1, {}, or any other non-word character, e.g.:
s<patternl><pattern2s
and

s#tpatternliffpattern2#
are both equivalent to

s/patternl/pattern2/
Binding Operators

Binding Operator =~

Syntax: Srefstring =~ m/pattern/

Binds a match operator to a variable other than $_. Returns true if a match is found.
Negation Operator !~

Syntax: Srefstring !~ wm/pattern/

Binds a match operator to a variable other than $_. Returns true if a match is not found.

Modifiers

Match and Substitution

The following can be used to modify the behavior of match and substitution operators:

Cancel Position Reset - /c

Used only with global matches, that is, as m/ /gc, to prevent the search cursor returning to the start of
the string if a match cannot be found. Instead, it remains at the end of the last match found.

Evaluate Replacement - /e

Evaluates the second argument of the substitution operator as an expression.

Global Match - /g

Finds all the instances in which the pattern matches the string rather than stopping at the first match.
Multiple matches will be numbered in the operator's return value.

Case-Insensitive - /i

Matches pattern against string while ignoring the case of the characters in either pattern or string.

524

Regular Expressions

Multi-Line Mode - /m

The string to be matched against is to be regarded as a collection of separate lines, with the result that
the metacharacters * and $, which would otherwise just match the beginning and end of the entire text,
now also match the beginning and end of each line.

One-Time Pattern Compilation - /o

If a pattern to match against a string contains variables, these are interpolated to form part of the
pattern. Later these variables may change, and the pattern will change with it when next matched
against. By adding /o, the pattern will be formed once and will not be recompiled even if the variables
within have changed value.

Single-Line Mode - /s
The string to be matched against will be regarded as a single line of text, with the result that the
metacharacter . will match against the newline character, which it would not do otherwise.

Free-Form - /x

Allows the use of whitespace and comments inside a match to expand and explain the expression.

Transliteration

The following can be used to modify the behavior of the transliteration operator:

Complement - /c

Uses complement of patternl - substitutes all characters except those specified in patternl.

Delete - /d
Deletes all the characters found but not replaced.

Squash - /s
Multiple replaced characters squashed - only returned once to transliterated string.

Localized Modifiers
Syntax:

/CaseSensitiveTxt ((?1) CaseInsensitiveTxt) CaseSensitiveText/
/CaseInsensitiveTxt((?-1) CaseSensitiveTxt) CaselnsensitiveText/1i

The following inline modifiers can be placed within a regular expression to enforce or negate relevant
matching behavior on limited portions of the expression:

M odifier Description inline enforce inline negate
/i case insensitive (?4) (-0)

/s single-line mode (?s) (?-s)

/m multi-line mode (?m) (?-m)

/x free-form (?x) (?-x)

525

Appendix A

Metacharacters

M etachar acter Meaning

[abc] Any one of a, b, or c.

["abc] Anything other than a, b, and c.

\d \D A digit; a non-digit.

\w \W A 'word' character; a non-'word' character.

\s \s A whitespace character; a non-whitespace character.

\b The boundary between a \w character and a \W character.
Any single character (apart from a new line).

(abc) The phrase 'abc' as a group.

? Preceding character or group may be present 0 or 1 times.

+ Preceding character or group is present 1 or more times.

* Preceding character or group may be present 0 or more
times.

{x,v} Preceding character or group is present between x and y
times.

{.v} Preceding character or group is present at most y times.

{x,} Preceding character or group is present at least x times.

{x} Preceding character or group is present x times.

Non-greediness For Quantifiers

Syntax: (pattern) +?
(pattern) *?

The metacharacters + and * are greedy by default and will try to match as much as possible of the
referenced string (while still achieving a full pattern match). This 'greedy’ behavior can be turned off by
placing a ? immediately after the respective metacharacter. A non-greedy match finds the minimum
number of characters matching the pattern.

Grouping and Alternation

| For Alternation
Syntax: patternl |pattern2

By separating two patterns with |, we can specify that a match on one or the other should be attempted.

526

Regular Expressions

() For Grouping And Backreferences ('Capturing’)

Syntax: (pattern)

This will group elements in pattern. If those elements are matched, a backreference is made to one of
the numeric special variables ($1, $2, $3 etc.)

(?:) For Non-backreferenced Grouping ('Clustering’)
Syntax: (?:pattern)

This will group elements in pattern without making backreferences.

Lookahead/behind Assertions

(?=) For Positive Lookahead
Syntax: patternl (?=pattern2)

This lets us look for a match on 'patterni followed by pattern2', without backreferencing
pattern2.

(?!) For Negative Lookahead

Syntax: patternl (?!pattern2)

This lets us look for a match on 'patterni not followed by pattern2', without backreferencing
pattern2.

(?<=) For Positive Lookbehind

Syntax: patternl (?<=pattern2)

This lets us look for a match on 'patternil preceded by pattern2', without backreferencing
pattern2. This only works if pattern2 is of fixed width.

(?<!) For Negative Lookbehind
Syntax: patternl (?<!pattern2)

This lets us look for a match on 'patterni not preceded by pattern2', without backreferencing
pattern2. This only works if pattern2 is of fixed width.

527

Appendix A

Backreference Variables

Variable Description

\num (num =1, 2, 3...) Within a regular expression, \ num returns the substring that was
matched with the numth grouped pattern in that regexp.

$num (num =1, 2, 3...) Outside a regular expression, $num returns the substring that was
matched with the numth grouped pattern in that regexp.

$+ This returns the substring matched with the last grouped pattern in a
regexp.
$& This returns the string that matched the whole regexp — this will

include portions of the string that matched (?:) groups, which are
otherwise not backreferenced.

$° This returns everything preceding the matched string in $&.

$! This returns everything following the matched string in $&.

Other

(?#) For Comments

Syntax: (?#comment_text)

This lets us place comments within the body of a regular expression — an alternative to the /x modifier.

528

Regular Expressions

529

Source code available at : www.wrox.com
Peer discussion at : lamplists.com

Also from Wrox
AsIElEie

)3

PROTESSIONAL PROFISSIONAL

Perl Perl

Programming _ Development

BEGINNING

Perl

http://mwww.wrox.com/books/1861003145.htm

lamplists.com

The Open Source Programmer’s Res ource Centre

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

