
Regular Expressions

Pattern Matching Operators

Match – m//
Syntax: m/pattern/

If a match is found for the pattern within a referenced string (default $_), the expression returns true.
(Note: If the delimiters // are used, the preceding m is not required.)

Modifiers: g, i, m, o, s, x

Substitution – s///
Syntax: s/pattern1/pattern2/

If a match is found for pattern1 within a referenced string (default $_), the relevant substring is
replaced by the contents of pattern2, and the expression returns true.

Modifiers: e, g, i, m, o, s, x

Transliteration – tr/// or y///
Syntax: tr/pattern1/pattern2/

y/pattern1/pattern2/

If any characters in pattern1 match those within a referenced string (default $_), instances of each are
replaced by the corresponding character in pattern2, and the expression returns the number of
characters replaced. (Note: If one character occurs several times within pattern1, only the first will be
used – for example, tr/abbc/xyz/ is equivalent to tr/abc/xyz/.)

Modifiers: c, d, s

Appendix A

524

Delimiters
Patterns may be delimited by character pairs <>, (), [], {}, or any other non-word character, e.g.:

s<pattern1><pattern2>

and

s#pattern1#pattern2#

are both equivalent to

s/pattern1/pattern2/

Binding Operators

Binding Operator =~
Syntax: $refstring =~ m/pattern/

Binds a match operator to a variable other than $_. Returns true if a match is found.

Negation Operator !~
Syntax: $refstring !~ m/pattern/

Binds a match operator to a variable other than $_. Returns true if a match is not found.

Modifiers

Match and Substitution
The following can be used to modify the behavior of match and substitution operators:

Cancel Position Reset - /c

Used only with global matches, that is, as m//gc, to prevent the search cursor returning to the start of
the string if a match cannot be found. Instead, it remains at the end of the last match found.

Evaluate Replacement – /e

Evaluates the second argument of the substitution operator as an expression.

Global Match – /g

Finds all the instances in which the pattern matches the string rather than stopping at the first match.
Multiple matches will be numbered in the operator's return value.

Case-Insensitive – /i

Matches pattern against string while ignoring the case of the characters in either pattern or string.

Regular Expressions

525

Multi-Line Mode – /m
The string to be matched against is to be regarded as a collection of separate lines, with the result that
the metacharacters ^ and $, which would otherwise just match the beginning and end of the entire text,
now also match the beginning and end of each line.

One-Time Pattern Compilation - /o
If a pattern to match against a string contains variables, these are interpolated to form part of the
pattern. Later these variables may change, and the pattern will change with it when next matched
against. By adding /o, the pattern will be formed once and will not be recompiled even if the variables
within have changed value.

Single-Line Mode – /s
The string to be matched against will be regarded as a single line of text, with the result that the
metacharacter . will match against the newline character, which it would not do otherwise.

Free-Form – /x
Allows the use of whitespace and comments inside a match to expand and explain the expression.

Transliteration
The following can be used to modify the behavior of the transliteration operator:

Complement - /c
Uses complement of pattern1 – substitutes all characters except those specified in pattern1.

Delete - /d
Deletes all the characters found but not replaced.

Squash - /s
Multiple replaced characters squashed - only returned once to transliterated string.

Localized Modifiers
Syntax:

/CaseSensitiveTxt((?i)CaseInsensitiveTxt)CaseSensitiveText/

/CaseInsensitiveTxt((?-i)CaseSensitiveTxt)CaseInsensitiveText/i

The following inline modifiers can be placed within a regular expression to enforce or negate relevant
matching behavior on limited portions of the expression:

Modifier Description inline enforce inline negate

/i case insensitive (?i) (?-i)

/s single-line mode (?s) (?-s)

/m multi-line mode (?m) (?-m)

/x free-form (?x) (?-x)

Appendix A

526

Metacharacters

Metacharacter Meaning

[abc] Any one of a, b, or c.

[^abc] Anything other than a, b, and c.

\d \D A digit; a non-digit.

\w \W A 'word' character; a non-'word' character.

\s \S A whitespace character; a non-whitespace character.

\b The boundary between a \w character and a \W character.

. Any single character (apart from a new line).

(abc) The phrase 'abc' as a group.

? Preceding character or group may be present 0 or 1 times.

+ Preceding character or group is present 1 or more times.

* Preceding character or group may be present 0 or more
times.

{x,y} Preceding character or group is present between x and y
times.

{,y} Preceding character or group is present at most y times.

{x,} Preceding character or group is present at least x times.

{x} Preceding character or group is present x times.

Non-greediness For Quantifiers
Syntax: (pattern)+?

(pattern)*?

The metacharacters + and * are greedy by default and will try to match as much as possible of the
referenced string (while still achieving a full pattern match). This 'greedy' behavior can be turned off by
placing a ? immediately after the respective metacharacter. A non-greedy match finds the minimum
number of characters matching the pattern.

Grouping and Alternation

| For Alternation
Syntax: pattern1|pattern2

By separating two patterns with |, we can specify that a match on one or the other should be attempted.

Regular Expressions

527

() For Grouping And Backreferences ('Capturing')
Syntax: (pattern)

This will group elements in pattern. If those elements are matched, a backreference is made to one of
the numeric special variables ($1, $2, $3 etc.)

 (?:) For Non-backreferenced Grouping ('Clustering')
Syntax: (?:pattern)

This will group elements in pattern without making backreferences.

Lookahead/behind Assertions

 (?=) For Positive Lookahead
Syntax: pattern1(?=pattern2)

This lets us look for a match on 'pattern1 followed by pattern2', without backreferencing
pattern2.

(?!) For Negative Lookahead
Syntax: pattern1(?!pattern2)

This lets us look for a match on 'pattern1 not followed by pattern2', without backreferencing
pattern2.

(?<=) For Positive Lookbehind
Syntax: pattern1(?<=pattern2)

This lets us look for a match on 'pattern1 preceded by pattern2', without backreferencing
pattern2. This only works if pattern2 is of fixed width.

(?<!) For Negative Lookbehind
Syntax: pattern1(?<!pattern2)

This lets us look for a match on 'pattern1 not preceded by pattern2', without backreferencing
pattern2. This only works if pattern2 is of fixed width.

Appendix A

528

Backreference Variables

Variable Description

\num (num = 1, 2, 3…) Within a regular expression, \num returns the substring that was
matched with the numth grouped pattern in that regexp.

$num (num = 1, 2, 3…) Outside a regular expression, $num returns the substring that was
matched with the numth grouped pattern in that regexp.

$+ This returns the substring matched with the last grouped pattern in a
regexp.

$& This returns the string that matched the whole regexp – this will
include portions of the string that matched (?:) groups, which are
otherwise not backreferenced.

$` This returns everything preceding the matched string in $&.

$' This returns everything following the matched string in $&.

Other

(?#) For Comments
Syntax: (?#comment_text)

This lets us place comments within the body of a regular expression – an alternative to the /x modifier.

Regular Expressions

529

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

